تعیین میزان قابلیت هضم و تجزیه‌پذیری پسماند رستوران با استفاده از روش‌های حیوان زنده، کیسه‌های نایلونی و تکنیک تولید گاز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی‌ارشد گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

2 استادیار، گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

چکیده

آزمایش حاضر به منظور تعیین ترکیب شیمیایی، قابلیت هضم و تجزیه‌پذیری پسماند رستوران با روش‌های حیوان زنده، کیسه‌های نایلونی و تکنیک تولید گاز انجام شد. قابلیت هضم با روش حیوان زنده با استفاده از 16 راس گوسفند نر هیبرید قزل- آرخار مرینوس با میانگین وزن 5/0±43 کیلوگرم انجام شد. جیره‌های آزمایشی شامل 4 تیمار صفر، 40، 50 و 60 درصد پسماند رستوران به همراه جیره پایه یونجه بودند. در روش آزمایشگاهی از دو راس گوسفند هیبرید قزل- آرخار مرینوس مجهز به کانولای شکمبه با میانگین وزن 5/1±40 کیلوگرم استفاده شد. ترکیبات شیمیایی پسماند رستوران شامل ماده خشک، چربی خام، پروتئین خام، الیاف خام، دیواره سلولی و دیواره سلولی بدون همی‌سلولز به ترتیب 4/33، 14، 15، 8/1، 2/15و 8/6 درصد تعیین شد. میانگین مقدار گاز تولیدی و انرژی قابل متابولیسم با استفاده از روش تولید گاز به میزان 7/87 میلی‌لیتر در گرم ماده خشک و 27/3 مگاکالری در کیلوگرم ماده خشک محاسبه شد. تجزیه‌پذیری ماده خشک و پروتئین خام پسماند رستوران در سرعت‌های عبور 2، 5 و 8 درصد در ساعت به‌ترتیب 2/49، 8/44 و 2/41 درصد برای ماده خشک و 1/71، 6/64 و 5/59 درصد برای پروتئین خام تعیین شد. نتایج تحقیق بیانگر آن است که پسماند رستوران می‌تواند در جیره نشخوارکنندگان مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of the digestibility and degradation of restaurant waste using in vivo, nylon bags and gas production techniques

نویسندگان [English]

  • M. Moradi 1
  • A. Hosseinkhani 2
  • S. Alijani 2
  • H. Daghigh Kia 2
1 MSc graduated, Department of Animal Science, Faculty of Agriculture, University of Tabriz
2 Assistant professor, Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz
چکیده [English]

This experiment was conducted to determine the chemical composition, digestibility and degradability of restaurant waste (RW) using in vivo, nylon bags and gas production techniques. Sixteen male Ghezel* Arkhar- Merino hybrid sheep (43 ± 0.5 kg average weight) were used in the in vivo digestibility method. Experimental diets were including 0, 40, 50 and 60 percent of RW along with alfalfa as basal diet. Two fistulated Ghezele*Arkhar-Merino hybrid sheep (40 ± 1.5 kg average weight) were used in the in situ method. Chemical composition of RW including dry matter (DM), ether extract (EE), crude protein (CP), crude fiber (CF), Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF) were 33.4, 14, 15, 1.8, 15.2 and 6.8 percent respectively. Average gas production and metabolisable energy content of RW calculated using in vitro gas production technique were 87.7 (ml/g DM) and 3.27 Mcal/kg DM respectively. Dry matter and crude protein degradability of restaurant waste were 49.2, 44.8 and 41.2 percent for DM and 71.1, 64.6 and 59.2 percent for CP respectively in the passage rates of 2, 5 and 8 percents per hour. These results indicated that the restaurant waste can be use in the ruminant rations.

کلیدواژه‌ها [English]

  • Restaurant waste
  • Gas production
  • in vivo
  • Nylon bag
  • hybrid Sheep
و خصوصیات تجزیه پذیری
in vitro و in vivo حسین خانی ع. 1377 . بررسی قابلیت هضم بعضی از مواد خوراکی به روش های
.
پایان نامه کارشناسی ارشد گروه علوم دامی دانشگاه تهران، صفحه 73 . in situ به روش
صمدی ف
.، و شمس شرق م. 1387 . ترکیب شیمیایی و قابلیت هضم تفاله زیتون به روش حیوان زنده. علوم کشاورزی و منابع
.210-205 :
طبیعی، 15
عبدی ع
.، شجاع، ج.، دانش مسگران م. و جانمحمدی ح. 1384 . مصرف اختیاری گاو دانه و یونجه با روش های حیوان زنده و
.23-
آزمایشگاهی. علوم کشاورزی و منابع طبیعی، ویژه نامه علوم دامی، 13:14
منصوری ه
.، نیکخواه ع.، رضائیان م.، مرادی م.، و میرهادی س. آ. 1382 . تعیین میزان تجزیه پذیری علوفه با استفاده از فن
.507-495 :
تولید گاز و کیسه نایلونی .علوم کشاورزی ایران، 34
نیکخواه ع
.، و ع. مهدوی. 1385 . مقایسه روش کیسه های نایلونی و روش آزمون گاز در تعیین ارزش غذایی مواد خوراکی. علوم
.292-281 :
کشاورزی ایران، 37
Agriculture and Food Research Council. 1992. Nutrient requirement if ruminant animals. AFRC technical
response to nutrient. Report No 9.
AOAC. 1990. Official methods of analysis of the association of official analytical chemists. 15th ed.
Washington, DC. USA.
Blummel M. and Orskov E.R. 1993. Composition of in vitro gas production and nylon bag degradability of
roughages in predicting food intake in cattle. Animal Feed Science and Technology, 40: 109 –119.
Boda K. 1990. Non conventional feedstuffs in the nutrition of farm animals. Development in Animal and
Veterinary Science, 23: 252.
Caton P.A., Carr M.A., Kim S.S. and Beautyman M.J. 2010. Energy recovery from waste food by combustion or
gasification with the potential for regenerative dehydration: A case study. Energy Conversion and
Management, 51: 1157-1169
 
.
Ceotto E. 2005. The issues of energy and carbon cycle: new perspectives for assessing the environmental impact
of animal waste utilization. Bioresource Technology, 96: 191-6.
Datt C. and Singh G.P. 1995. Effect of protein supplementation on in vitro digestibility and gas production of
wheat straw. Indian Journal Dairy Science, 48: 357 – 361.
Dhakad A., Garg A.K., Singh P. and Agrawal D.K. 2002. Effect of replacement of maize grain with wheat bran
of the performance of growing lambs. Small Ruminant Research, 43: 227- 234.
Fedorak P.M. and Hurdy D.E. 1983. A simple apparatus for measuring gas production by methanogenic cultures
in serum bottles. Environment Technology, 4: 425-432.
Getachew G., Crovetto G.M., Fondevila M., Krishna moorth U., Singh B., Spanghero M., Steingass H.,
Robinson P.H. and Kailas M.M. 2002. Laboratory variation of 24 h in vitro gas production and estimated
metabolizable energy values of ruminant feeds. Animal Feed Science and Technology, 102: 169-180.
Huhtanen P., Jaakkola S. and Kukkonen U. 1995. Ruminal plant cell wall digestibility estimated from digestion
and passage kinetics utilizing mathematical models. Animal Feed Science and Technology, 52: 159–173.
Hvelplund, T. and Weisbjerg M.R. 2000. In situ techniques for the estimation of protein degradability and
postrumen availability. Pages 233–258 in Forage Evaluation in Ruminant Nutrition.
Kjos N.P., Overland M., Arnkværn E. and Sorheim O. 2000. Food waste products in diets for growing–finishing
pigs: Effect on growth performance, carcass characteristics and meat quality. Acta Agriculture Scandiavica,
Section A- Animal Science, 50: 193–204.
Larbi A., Smith J.W., Adekunle I.O., Raji A.M. and Ladipo D.O. 1998. Chemical composition, rumen
degradation, and gas production characteristics of some multipurpose fodder trees and shrubs during wet and
dry seasons in humid tropics. Animal feed Science and Technology, 72: 81-96.
Maczulak A.E., Dehority B.A. and Palmquist D.L. 1981. Effects of long-chain fatty acids on growth of rumen
bacteria. Apply Environment Microbiology, 42: 856–862.
Marquis K.L. 2007. The managers’ guide to loss prevention. Ithaca, NY: Cornell University Food waste
Management Distance Education Program. www.retaillosspreventionv.com
Menke K.H. and Steingass H. 1987. Des energetischen futterwerts aus der in vitro mit pansensaft bestimmten
gasbildung und der chemischen analyse. II. Regressionsgleichungen Bers, 15: 59-94.
Michalet-Doreau B. and Ould Bah M.Y. 1992. In vitro and in sacco methods for the estimation of dietary nitrogen degradability in the rumen: a review. Animal feed Science and Technology, 40: 57–86.
Minkler F.C. 1914. Hog cholera and swine production. Circular No. 40. New Jersey Agricultural Experiment
Station. Trenton, NJ.
Mir P.S. and Mir Z. 1993. Predicting intake and digestibility using mathematical models of ruminal function.
Journal of Animal science, 64: 1548-1558.
Myer R.O., Brendemuh J.H. and Johnson D.D. 1999. Evaluation of dehydrate restaurant food waste products as
feedstuffs for finishing pigs. Journal of Animal Science, 3: 685-691.
Orskov E.R. and McDonald I. 1979. The estimation of protein degradability in the rumen from incubation
measurements weighted according to the passage rate. Journal Agricultural Science. 92:499-503.
Orskov E.R., Deb hovel F.D. and Mould F. 1980. The use of the nylon bag technique for the evolution of feed
stuffs. Journal Tropical Animal Production, 5: 195-213.
Orskov E.R., Reid G.W. and Kay M. 1988. Prediction of intake by cattle from degradation characteristics of
roughage. Animal Production, 6: 29-34.
Pilar S., Pinacho A., Ramos P. and Tejedor C. 2004. Microbiological characterization of food residues for
animal feeding. Waste Management, 24: 919-926.
Sadao K. 2005. Dehydrated Kitchen Waste as a Feedstuff for Laying Hens. International Journal Poultry
Science, 4: 689-694.
SAS. 2001. User's Guide: Statistics. Version 8.2. Cary, NC, USA.
Tackett V.L., Bertrand J.A., Jenkins T.C., Pardue F.E. and Grimes L.W. 1996. Interaction of dietary fat and acid
detergent fiber diets of lactating dairy cows. Journal of Dairy Science, 79: 270–275.
Tothi B.P., Lunda M., Weisbjerg R. and Hvelplund T. 2003. Effect of expander processing on fractional rate of
maize and barley starch degradation in the rumen of dairy cows estimated using rumen evacuation and in situ
techniques. Animal Feed Science and Technology, 194: 71-94.
Van Soest P.J., Robertson J.B. and Lewis B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and non
starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-97.
Walker P.M., Antas A.D. and Olson J.L. 2004. A dehydrated mixture containing food waste and wheat
middlings serves as a protein and protein and energy substitute in beef cow diets. Production Animal
Science, 20: 39-45.
Walker P.M., Brown S.A., Dust J.M. and Finnigan D.M. 2002. Evaluation of feed mixtures amended with
processed food waste as feedstuffs for finishing lambs. Production Animal Science, 237-246
 
.
Walker P.M., Hoelting F.B. and Wertz A.E. 1998. Fresh pulped food waste replaces supplemental protein and a
portion of the dietary energy in total mixed rations for beef cows. Production Animal Science, 14:207-216.
Westendorf M.L., Dong Z.C. and Schoknecht P.A. 1998. Recycled cafeteria food waste as a feed for swine:
nutrient content, digestibility, growth, and meat quality. Journal of Animal Science, 76: 3250.
Woods V.B., Moloney A.P., Mulligan F.J., Kenny M.J. and Omara F.P. 1999. The effect of animal species
(cattle or sheep) and level of intake by cattle on in vivo digestibility of concentrate ingredients. Animal Feed Science and Technology, 80: 135-150.