بررسی اثر متقابل بین تعداد کاتیون-آنیون جیره و فیتاز میکروبی بر عملکرد، خصوصیات لاش و پاسخ ایمنی جوجه‌های گوشتی

میزان شهسواری

استادیار تغذیه دام، گروه علوم دامی، دانشکده علوم اسلامی واحد شیراز

(تاریخ دریافت: ۱۳۹۲/۰۲/۲۴ - تاریخ بذیرش: ۱۴۰۰/۰۱/۰۳)

چکیده

در این تحقیق به منظور بررسی آثار اصلی و متقابل سطوح مختلف تعداد کاتیون-آنیون جیره و آنزیم فیتاز میکروبی بر عملکرد جوجه، خصوصیات لاشه و پاسخ ایمنی، از ۱۲۰۰ قطعه جوجه گوشتی نر سویه نجاری راس استفاده شد. آزمایش فاکتوریل ۴×۴ با چهار سطح تعداد کاتیون-آنیون جیره (۰، ۲۵، ۵۰ و ۲۵۰ میلی‌کیلو گرم در جیره) و سه سطح آنزیم فیتاز میکروبی در جیره (۵۰۰ و ۷۵۰ واحد فیتاز در کیلو گرم جیره) استفاده شد. نتایج نشان داد آثار متقابل بین تعداد کاتیون-آنیون جیره و آنزیم فیتاز ناشی از تفاوت ام‌سی‌اف دام (P< ۰/۰۵) بر صفات عملکردی (خواراک مصرفی، ضریب تبدیل غذایی، افزایش وزن، شاخش تولید و وزن بدین جوجه‌های گوشتی در سن ۲۴ روزگی) شد. آثار متقابل بین تعداد کاتیون-آنیون جیره و فیتاز میکروبی موجب عدم تفاوت معنی‌دار (P< ۰/۰۵) بین تئمارها از نظر خصوصیات لاشه (وزن لاشه، ران، سایه، بافت + گردن، کیف، قلب، طحال، سنگدان، پوست) و چربی حفره شکمی و هموگلوبین وزن و طول قسمت‌های مختلف روده (پاکتی‌های جوجه‌های گوشتی) شد. آثار متقابل بین تعداد کاتیون-آنیون جیره و فیتاز میکروبی باعث تفاوت دام‌های میانی معنی‌دار (P< ۰/۰۵) ناشی از تفاوت در وزن بدین جوجه‌های گوشتی با جیره در دو سن ۲۴ و ۳۴ روزگی شد. با طور کلی، نتایج حاصل از پژوهش حاضر نشان داد که تغییر پاسخ در عملکرد و سیستم ایمنی جوجه‌های گوشتی به مکمل فیتاز در جیره تا حدی می‌تواند تحت تأثیر تفاوت در سطوح تعداد کاتیون-آنیون جیره باشد.

واژه‌های کلیدی: ضریب تبدیل غذایی، تعداد کاتیون-آنیون جیره، فیتاز میکروبی

نویسنده و مسئول: kayvanshahsavari@yahoo.com
Mongin, 1989.

Cowieson et al. (2004) and Selle et al., 2007; Selle and Ravindran, 2007.

Engelen et al., 1994.

Selle et al., 2007.

Xylose.

NRC (1994) and Engelen et al., 1994.

Phyzyme XP 5000 G; Finnfeed Company, USA

Xylose.

Engelen et al., 1994.

Engelen et al., 1994.

Xylose.

Xylose.
Table 1. Ingredients and calculated nutrient contents of the experimental basal diets

<table>
<thead>
<tr>
<th>Dietary electrolyte balance level (mEq/kg)</th>
<th>0-14 (Starter)</th>
<th>15-28 (Grower)</th>
<th>29-42 (Finisher)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn grain (%)</td>
<td>53.5</td>
<td>53.5</td>
<td>53.5</td>
</tr>
<tr>
<td>Soybean meal (%)</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Fish meal (%)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Dicalcium phosphate (%)</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Oyster shell (%)</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>Soybean oil (%)</td>
<td>0.38</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Sodium bicarbonate (%)</td>
<td>-</td>
<td>0.05</td>
<td>0.27</td>
</tr>
<tr>
<td>Ammonium chloride (%)</td>
<td>0.28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DL-Methionine (%)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Sodium chloride (%)</td>
<td>0.18</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Total (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Calculated analysis

AME, kcal/kg	2830	2830	2830
Crude Protein (%)	22.0	22.0	22.0
Lysine (%)	1.15	1.15	1.15
Methionine (%)	0.48	0.48	0.48
Available P (%)	0.5	0.5	0.5
Calcium (%)	1.00	1.00	1.00
Sodium (%)	0.18	0.18	0.18
Potassium (%)	0.44	0.35	0.19

1, 500 and 750 phytase units of phytase/kg of diet was applied to each level of dietary electrolyte balance.

2 Vitamin supplements contributed per ton of complete feed: Grower feed-vitamin A, 2,300,000 IU; vitamin D3, 400,000 IU; vitamin E, 1,800 mg; menadione, 300 mg; thiamine, 150 mg; riboflavin, 1,400 mg; vitamin B12, 3,500 mcg; pantothenic acid, 2,000 mg; nicotinic acid, 7,000 mg; pyridoxine, 250 mg; folic acid, 150 mg; biotin, 20 mg; choline, 125 g; menadione-MD, 30 g; folic acid, 250 g; DL-methionine, 275 g; and carrier, 1,000 g.

<table>
<thead>
<tr>
<th>Table 2. Phytase activity in the experimental diets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary electrolyte balance level (mEq/kg of diet)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>275</td>
</tr>
<tr>
<td>275</td>
</tr>
<tr>
<td>275</td>
</tr>
</tbody>
</table>
Nécessité d’effectuer des contrôles de qualité pour évaluer la pertinence des résultats obtenus.

Oedapo et al. (2006) ont également étudié l’effet de l’azote sur la croissance des plantes. Les résultats montrent que l’application d’azote est essentielle pour améliorer la croissance des plantes.

Hulan et al. (1987) ont étudié l’effet de l’azote sur la croissance des plantes de céréales. Les résultats montrent que l’application d’azote favorise la croissance des plantes, améliorant ainsi leur productivité.

Oedapo et al. (2006) ont également étudié l’effet de l’azote sur la croissance des plantes. Les résultats montrent que l’application d’azote est essentielle pour améliorer la croissance des plantes.

Hulan et al. (1987) ont étudié l’effet de l’azote sur la croissance des plantes de céréales. Les résultats montrent que l’application d’azote favorise la croissance des plantes, améliorant ainsi leur productivité.
Table 3. Effects of dietary electrolyte balance and microbial phytase on the productive traits of broiler chickens

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Body weight (g)</th>
<th>Feed intake (g/d)</th>
<th>Weight gain (g/bird/d)</th>
<th>Feed conversion ratio</th>
<th>Production index</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>2144.45a</td>
<td>100.00a</td>
<td>51.50</td>
<td>1.943ab</td>
<td>264.41</td>
</tr>
<tr>
<td>225</td>
<td>500</td>
<td>2364.38b</td>
<td>120.64ab</td>
<td>61.99c</td>
<td>1.946b</td>
<td>288.82b</td>
</tr>
<tr>
<td>225</td>
<td>750</td>
<td>2527.31b</td>
<td>122.18ab</td>
<td>67.02a</td>
<td>1.823b</td>
<td>332.11</td>
</tr>
<tr>
<td>225</td>
<td>500</td>
<td>2251.78b</td>
<td>102.24ab</td>
<td>55.82</td>
<td>1.831b</td>
<td>276.66b</td>
</tr>
<tr>
<td>225</td>
<td>750</td>
<td>2454.47ab</td>
<td>115.18b</td>
<td>64.47</td>
<td>1.942b</td>
<td>304.91b</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>2244.03b</td>
<td>104.54b</td>
<td>55.25</td>
<td>1.890b</td>
<td>278.04b</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>2315.56b</td>
<td>122.00b</td>
<td>60.99ab</td>
<td>1.999b</td>
<td>280.21b</td>
</tr>
<tr>
<td>200</td>
<td>750</td>
<td>2400.44b</td>
<td>126.53b</td>
<td>64.33ab</td>
<td>1.966b</td>
<td>295.35b</td>
</tr>
<tr>
<td>275</td>
<td>0</td>
<td>2185.19b</td>
<td>107.50b</td>
<td>55.86</td>
<td>1.895b</td>
<td>297.66b</td>
</tr>
<tr>
<td>275</td>
<td>500</td>
<td>2280.53b</td>
<td>104.45b</td>
<td>60.46cd</td>
<td>1.729b</td>
<td>313.16b</td>
</tr>
<tr>
<td>275</td>
<td>750</td>
<td>2414.59a</td>
<td>123.27a</td>
<td>64.58ab</td>
<td>1.909ab</td>
<td>304.08b</td>
</tr>
<tr>
<td>Pooled SEM</td>
<td></td>
<td>159.53</td>
<td>10.96</td>
<td>4.36</td>
<td>0.110</td>
<td>41.22</td>
</tr>
</tbody>
</table>

Main effect

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Body weight (g)</th>
<th>Feed intake (g/d)</th>
<th>Weight gain (g/bird/d)</th>
<th>Feed conversion ratio</th>
<th>Production index</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>2363.74a</td>
<td>116.06ab</td>
<td>61.26</td>
<td>1.890ab</td>
<td>299.69</td>
</tr>
<tr>
<td>225</td>
<td>500</td>
<td>2329.26b</td>
<td>113.00b</td>
<td>59.62</td>
<td>1.893b</td>
<td>293.78</td>
</tr>
<tr>
<td>250</td>
<td>750</td>
<td>2322.51ab</td>
<td>119.33a</td>
<td>60.81</td>
<td>1.960a</td>
<td>288.98</td>
</tr>
<tr>
<td>275</td>
<td>0</td>
<td>2293.44b</td>
<td>111.74b</td>
<td>60.30</td>
<td>1.854b</td>
<td>295.88</td>
</tr>
<tr>
<td>275</td>
<td>500</td>
<td>2208.79c</td>
<td>103.83c</td>
<td>54.86</td>
<td>1.893c</td>
<td>276.01b</td>
</tr>
<tr>
<td>275</td>
<td>750</td>
<td>2449.20a</td>
<td>114.67b</td>
<td>60.50b</td>
<td>1.895b</td>
<td>294.68b</td>
</tr>
<tr>
<td>Pooled SEM</td>
<td></td>
<td>159.53</td>
<td>10.96</td>
<td>4.36</td>
<td>0.110</td>
<td>41.22</td>
</tr>
</tbody>
</table>

Phytase

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Body weight (g)</th>
<th>Feed intake (g/d)</th>
<th>Weight gain (g/bird/d)</th>
<th>Feed conversion ratio</th>
<th>Production index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2300.75b</td>
<td>114.67b</td>
<td>60.50b</td>
<td>1.895b</td>
<td>294.68b</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>2449.20a</td>
<td>124.29a</td>
<td>65.10a</td>
<td>1.910a</td>
<td>308.86c</td>
</tr>
</tbody>
</table>

Probability

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Body weight (g)</th>
<th>Feed intake (g/d)</th>
<th>Weight gain (g/bird/d)</th>
<th>Feed conversion ratio</th>
<th>Production index</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>2300.75b</td>
<td>114.67b</td>
<td>60.50b</td>
<td>1.895b</td>
<td>294.68b</td>
</tr>
<tr>
<td>225</td>
<td>500</td>
<td>2449.20a</td>
<td>124.29a</td>
<td>65.10a</td>
<td>1.910a</td>
<td>308.86c</td>
</tr>
</tbody>
</table>

Means in the same columns with different superscripts are significantly different (P < 0.05). NS: Non-significant.
in the field of virology and virology-related fields. The results of their study suggest that the treatment of these viruses is crucial.

In conclusion, the findings of this study indicate the potential significance of these viruses in the field of virology and virology-related fields. Further research is needed to confirm these results and to explore the implications of these findings.
Table 4. Effects of dietary electrolyte balance and microbial phytase on the carcass characteristics of broiler chickens

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Carcass (% BW)</th>
<th>Thighs (% BW)</th>
<th>Breast (% BW)</th>
<th>Back + neck (% BW)</th>
<th>Liver (% BW)</th>
<th>Gizzard (% BW)</th>
<th>Bursa (% BW)</th>
<th>Heart (% BW)</th>
<th>Spleen (% BW)</th>
<th>Abdominal fat (% BW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>60.12</td>
<td>19.35</td>
<td>19.15</td>
<td>21.61</td>
<td>2.43</td>
<td>2.65</td>
<td>0.132</td>
<td>0.607</td>
<td>0.083</td>
<td>1.33</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>60.76</td>
<td>19.69</td>
<td>19.14</td>
<td>22.03</td>
<td>2.46</td>
<td>2.83</td>
<td>0.126</td>
<td>0.532</td>
<td>0.094</td>
<td>1.42</td>
</tr>
<tr>
<td>200</td>
<td>750</td>
<td>60.74</td>
<td>19.74</td>
<td>19.16</td>
<td>21.30</td>
<td>2.41</td>
<td>2.84</td>
<td>0.126</td>
<td>0.607</td>
<td>0.087</td>
<td>1.51</td>
</tr>
<tr>
<td>225</td>
<td>0</td>
<td>60.10</td>
<td>19.76</td>
<td>19.46</td>
<td>21.62</td>
<td>2.36</td>
<td>2.76</td>
<td>0.192</td>
<td>0.547</td>
<td>0.087</td>
<td>1.28</td>
</tr>
<tr>
<td>225</td>
<td>500</td>
<td>60.85</td>
<td>19.23</td>
<td>18.56</td>
<td>22.03</td>
<td>2.45</td>
<td>2.80</td>
<td>0.142</td>
<td>0.502</td>
<td>0.097</td>
<td>1.40</td>
</tr>
<tr>
<td>225</td>
<td>750</td>
<td>61.32</td>
<td>18.78</td>
<td>19.58</td>
<td>22.84</td>
<td>2.43</td>
<td>2.69</td>
<td>0.161</td>
<td>0.477</td>
<td>0.080</td>
<td>1.48</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>59.90</td>
<td>18.54</td>
<td>19.37</td>
<td>21.90</td>
<td>2.69</td>
<td>2.78</td>
<td>0.165</td>
<td>0.547</td>
<td>0.089</td>
<td>1.46</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>60.16</td>
<td>19.71</td>
<td>18.80</td>
<td>21.57</td>
<td>2.57</td>
<td>2.88</td>
<td>0.136</td>
<td>0.475</td>
<td>0.095</td>
<td>1.69</td>
</tr>
<tr>
<td>250</td>
<td>750</td>
<td>60.50</td>
<td>19.17</td>
<td>18.62</td>
<td>22.62</td>
<td>2.18</td>
<td>2.80</td>
<td>0.144</td>
<td>0.467</td>
<td>0.092</td>
<td>1.65</td>
</tr>
<tr>
<td>275</td>
<td>0</td>
<td>60.41</td>
<td>19.19</td>
<td>18.97</td>
<td>22.24</td>
<td>2.67</td>
<td>2.72</td>
<td>0.147</td>
<td>0.555</td>
<td>0.082</td>
<td>1.25</td>
</tr>
<tr>
<td>275</td>
<td>500</td>
<td>61.72</td>
<td>19.33</td>
<td>19.44</td>
<td>22.76</td>
<td>2.38</td>
<td>2.72</td>
<td>0.135</td>
<td>0.527</td>
<td>0.098</td>
<td>1.52</td>
</tr>
<tr>
<td>275</td>
<td>750</td>
<td>59.94</td>
<td>18.60</td>
<td>18.74</td>
<td>23.11</td>
<td>2.24</td>
<td>2.76</td>
<td>0.151</td>
<td>0.483</td>
<td>0.091</td>
<td>1.46</td>
</tr>
<tr>
<td>Pooled SEM</td>
<td></td>
<td>3.06</td>
<td>1.92</td>
<td>2.46</td>
<td>3.23</td>
<td>0.58</td>
<td>0.86</td>
<td>0.08</td>
<td>0.19</td>
<td>0.04</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Main effect

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>60.58</td>
<td>19.09</td>
<td>19.15</td>
<td>21.65</td>
<td>2.43</td>
<td>2.71</td>
<td>0.128</td>
<td>0.580</td>
<td>0.094</td>
<td>1.44</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>60.27</td>
<td>19.30</td>
<td>19.17</td>
<td>22.10</td>
<td>2.41</td>
<td>2.66</td>
<td>0.165</td>
<td>0.512</td>
<td>0.096</td>
<td>1.58</td>
</tr>
<tr>
<td>225</td>
<td>0</td>
<td>59.52</td>
<td>19.47</td>
<td>18.93</td>
<td>22.03</td>
<td>2.48</td>
<td>2.96</td>
<td>0.148</td>
<td>0.497</td>
<td>0.089</td>
<td>1.51</td>
</tr>
<tr>
<td>225</td>
<td>500</td>
<td>60.76</td>
<td>18.94</td>
<td>19.08</td>
<td>22.67</td>
<td>2.45</td>
<td>2.61</td>
<td>0.144</td>
<td>0.525</td>
<td>0.085</td>
<td>1.65</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>60.33</td>
<td>19.20</td>
<td>19.24</td>
<td>21.86</td>
<td>2.54</td>
<td>2.88</td>
<td>0.159</td>
<td>0.561</td>
<td>0.093</td>
<td>1.43</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>60.16</td>
<td>18.99</td>
<td>19.99</td>
<td>22.10</td>
<td>2.46</td>
<td>2.88</td>
<td>0.146</td>
<td>0.509</td>
<td>0.096</td>
<td>1.47</td>
</tr>
<tr>
<td>275</td>
<td>0</td>
<td>60.63</td>
<td>19.17</td>
<td>19.01</td>
<td>22.40</td>
<td>2.31</td>
<td>2.76</td>
<td>0.153</td>
<td>0.513</td>
<td>0.086</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Phytase

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>60.58</td>
<td>19.09</td>
<td>19.15</td>
<td>21.65</td>
<td>2.43</td>
<td>2.71</td>
<td>0.128</td>
<td>0.580</td>
<td>0.094</td>
<td>1.44</td>
</tr>
<tr>
<td>225</td>
<td>0</td>
<td>59.52</td>
<td>19.47</td>
<td>18.93</td>
<td>22.03</td>
<td>2.48</td>
<td>2.96</td>
<td>0.148</td>
<td>0.497</td>
<td>0.089</td>
<td>1.51</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>60.76</td>
<td>18.94</td>
<td>19.08</td>
<td>22.67</td>
<td>2.45</td>
<td>2.81</td>
<td>0.144</td>
<td>0.525</td>
<td>0.085</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Probability

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>NS</td>
<td>60.58</td>
<td>19.09</td>
<td>19.15</td>
<td>21.65</td>
<td>2.43</td>
<td>2.71</td>
<td>0.128</td>
<td>0.580</td>
<td>0.094</td>
<td>1.44</td>
</tr>
<tr>
<td>225</td>
<td>NS</td>
<td>59.52</td>
<td>19.47</td>
<td>18.93</td>
<td>22.03</td>
<td>2.48</td>
<td>2.96</td>
<td>0.148</td>
<td>0.497</td>
<td>0.089</td>
<td>1.51</td>
</tr>
<tr>
<td>250</td>
<td>NS</td>
<td>60.76</td>
<td>18.94</td>
<td>19.08</td>
<td>22.67</td>
<td>2.45</td>
<td>2.81</td>
<td>0.144</td>
<td>0.525</td>
<td>0.085</td>
<td>1.65</td>
</tr>
</tbody>
</table>

1DEB: Dietary electrolyte balance. Carcass yields expressed as percentage of live body weight. NS: Non-significant

Data reported are means of two birds per replicate.
Table 5. Effects of dietary electrolyte balance and microbial phytase on weight and length different parts of small intestine of broiler chickens

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Relative weight</th>
<th>Relative length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duodenum</td>
<td>Jejunum</td>
<td>Ileum</td>
</tr>
<tr>
<td>200 0</td>
<td>0.91</td>
<td>1.89</td>
<td>2.71</td>
</tr>
<tr>
<td>200 500</td>
<td>0.86</td>
<td>1.96</td>
<td>2.38</td>
</tr>
<tr>
<td>200 750</td>
<td>0.85</td>
<td>2.22</td>
<td>2.46</td>
</tr>
<tr>
<td>225 0</td>
<td>0.90</td>
<td>2.06</td>
<td>2.69</td>
</tr>
<tr>
<td>225 500</td>
<td>0.87</td>
<td>2.15</td>
<td>2.66</td>
</tr>
<tr>
<td>225 750</td>
<td>0.81</td>
<td>1.75</td>
<td>2.37</td>
</tr>
<tr>
<td>250 0</td>
<td>0.85</td>
<td>2.21</td>
<td>2.53</td>
</tr>
<tr>
<td>250 500</td>
<td>0.84</td>
<td>2.25</td>
<td>2.80</td>
</tr>
<tr>
<td>250 750</td>
<td>0.75</td>
<td>2.12</td>
<td>2.77</td>
</tr>
<tr>
<td>275 0</td>
<td>0.86</td>
<td>1.86</td>
<td>2.66</td>
</tr>
<tr>
<td>275 500</td>
<td>0.84</td>
<td>1.89</td>
<td>2.72</td>
</tr>
<tr>
<td>275 750</td>
<td>0.84</td>
<td>1.84</td>
<td>2.68</td>
</tr>
<tr>
<td>Pooled SEM</td>
<td>0.29</td>
<td>0.72</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Main effect

DEB

<table>
<thead>
<tr>
<th>DEB</th>
<th>200</th>
<th>0.87</th>
<th>2.04</th>
<th>2.50</th>
<th>1.04</th>
<th>2.86</th>
<th>3.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>0.86</td>
<td>2.01</td>
<td>2.59</td>
<td>0.93</td>
<td>2.67</td>
<td>3.12</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>0.81</td>
<td>2.19</td>
<td>2.70</td>
<td>0.95</td>
<td>2.80</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>0.84</td>
<td>1.96</td>
<td>2.69</td>
<td>1.01</td>
<td>2.78</td>
<td>3.20</td>
<td></td>
</tr>
</tbody>
</table>

Phytase

<table>
<thead>
<tr>
<th>Phytase</th>
<th>0</th>
<th>0.88</th>
<th>2.01</th>
<th>2.64</th>
<th>0.98</th>
<th>2.70</th>
<th>3.21</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0.85</td>
<td>2.06</td>
<td>2.64</td>
<td>1.01</td>
<td>2.94</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>0.81</td>
<td>2.01</td>
<td>2.58</td>
<td>0.96</td>
<td>2.67</td>
<td>3.07</td>
<td></td>
</tr>
</tbody>
</table>

Probability

<table>
<thead>
<tr>
<th>DEB</th>
<th>Phytase</th>
<th>ATP</th>
<th>DEBxPhytase</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Weight and length of different parts of small intestine expressed as percentage of live body weight. *DEB: Dietary electrolyte balance. NS: Non-significant.*

سلول های ارتباطی و انرژی‌های T شد. همچنین ترشح اینترگولپولین A بهبود پیدا کرد و پیشنهاد شده که فیتاز و
فیتاز در سلایمن دستگاه گوارش و کارکرد سیستم فیتاز باعث تغییر فعالیت
بت پای دادن (Liu et al., 2008) از شده که این موضوع بسیار
GA

Dilworth et al. (2005) در واقع، فیتاز سبب افزایش ترشح سدیم با

منشا دخاه به درون مجاری روده می‌شود. بنابراین، مقدار

سدیمی که جهت انتقال عضاد مقداری لازم است، کاهش می‌یابد.

(Liu et al., 2008) عمله به اثر سدیم، کمبود سایر عضای می‌شود.

(Liu et al., 2008) فعالیت بیشتر افزایش می‌یابد. کاهش

فیتاز می‌شود (Kettunen and Rautonen, 2005).

آنتی‌فیتاز که با مقدار بالای فیتاز Vucenik and (2006). در

آنتی‌فیتاز از راه جذب مواد عضاز سبب بهبود تکامل و بهبود

آنتی‌فیتاز (Kettunen and Rautonen, 2005). آنتی‌فیتاز

فیتاز و کمک‌رسان می‌شود. (Cowieson and Ravindran, 2007)

که به وسیله آن فیتاز به اثر مانعی

فیتاز آنتی‌فیتاز هضمی در دستگاه گوارش حیوانات می‌شود،

شامل تکامل کیلیات با کافئوزیریه هریس در فعالیت آنتی‌فیتاز

و باند شدن با فراورده‌های هضمی مثل تکامل مجموعه

در تحقیق حاضر، افزودن فیتاز میکروپی به جیره در دو سطح

500 و 750 واحد فیتاز سبب افزایش تولید عیار یان تولید

شده‌ای سیستم گروه فاسیون (بهبود سیستم

ایمنی) شد. بسیاری از تحقیقات انجام شده نشان داده است که فیتاز گوشتان از اثرات افزایش فیتاز بهبود سیستم ایمنی است.

این مورد مناسب شده که تجزیه محصولات فعالیت فیتاز

اختلال فعالیت سلول‌های ایمنی ایمنی تهیه کننده

می‌شود. (Shamsuddin, 2006; Bozsik et al., 2007)

(p2& %&

Liu et al., 2008)

ATP

ATP

Liu et al., 2008)

(p2& %&

Liu et al., 2008)

Kettunen and Rautonen, 2005)

(Bozsik et al., 2007)

(p2& %&

Liu et al., 2008)
Table 6. Effects of dietary electrolyte balance and microbial phytase on the immune system of broiler

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Anti-SRBC antibody titers during primary and secondary injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>24 d of age</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>3.85^c</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>4.33^c</td>
</tr>
<tr>
<td>200</td>
<td>750</td>
<td>4.21^cd</td>
</tr>
<tr>
<td>225</td>
<td>0</td>
<td>4.01^bc</td>
</tr>
<tr>
<td>225</td>
<td>500</td>
<td>5.11^bc</td>
</tr>
<tr>
<td>225</td>
<td>750</td>
<td>4.96^bc</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>3.17^d</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>5.09^bc</td>
</tr>
<tr>
<td>250</td>
<td>750</td>
<td>5.25^a</td>
</tr>
<tr>
<td>275</td>
<td>0</td>
<td>3.35^d</td>
</tr>
<tr>
<td>275</td>
<td>500</td>
<td>4.85^b</td>
</tr>
<tr>
<td>275</td>
<td>750</td>
<td>4.52^c</td>
</tr>
<tr>
<td>Pooled SEM</td>
<td></td>
<td>0.09</td>
</tr>
</tbody>
</table>

Main effect

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Anti-SRBC antibody titers during primary and secondary injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>500</td>
<td>4.13^c</td>
</tr>
<tr>
<td>225</td>
<td>0</td>
<td>4.69^b</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>4.50^b</td>
</tr>
<tr>
<td>275</td>
<td>0</td>
<td>4.2^b</td>
</tr>
</tbody>
</table>

Phytase

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Phytase</th>
<th>Anti-SRBC antibody titers during primary and secondary injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>3.60^b</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>4.85^a</td>
</tr>
<tr>
<td>750</td>
<td>0</td>
<td>4.74^a</td>
</tr>
</tbody>
</table>

Probability

<table>
<thead>
<tr>
<th>DEB</th>
<th>Phytase</th>
<th>DEB×phytase</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
The values in the same column with different superscript letters are significantly different (P < 0.05). NS: Non-significant.

1 DEB: Dietary electrolyte balance

Study of the interaction between dietary cation-anion balance and microbial phytase on performance, carcass characteristics and immune response of broiler chickens

K. Shahsavari*

Assistant professor of Animal Nutrition, Department of Animal Science, Shabestar Branch, Islamic Azad University

(Received: 10-6-2014 – Accepted: 14-3-2016)

Abstract

This experiment was carried out using 1200 male Ross broiler chicks to evaluate the interaction effects between dietary cation-anion balance and microbial phytase on performance, carcass characteristics and immune response. The chicks were assigned to the dietary treatments with a 4×3 factorial arrangement in completely randomized design with four levels of dietary cation-anion balance (200, 225, 250 and 275 mEq/kg of diet) and three levels of microbial phytase (0, 500 and 750 phytase units/kg of diets). Results showed that the dietary cation-anion balance and microbial phytase interaction was significant (P < 0.05) for performance traits (feed intake, feed conversion ratio, body weight gain, production index and body weight of broilers on 42 day of age). The interaction between cation-anion balance and phytase was not significant (P > 0.05) for carcass characteristics (carcass, thighs, breast, back + neck, liver, heart, spleen, gizzard, borsa and abdominal fat weights, and also intestine weight and length of the broiler chickens). The dietary cation-anion balance × microbial phytase interaction was significant (P < 0.05) for immune system of broilers at 24 and 34 d of age. Overall, results of the present study indicated that variability in phytase response in performance and immune system of broiler chickens may be affected, in part, by differences in dietary electrolyte levels.

Keywords: Carass traits, microbial phytase, production index, sodium bicarbonate

*Corresponding author: kayvanshahsavari@yahoo.com