

Animal Production Research

Vol. 11, No. 3, 2022 (83-92) doi: 10.22124/AR.2022.20184.1638 eISSN: 2538-6107 pISSN: 2252-0872

RESEARCH PAPER

OPEN ACCESS

Effect of replacing dietary alfalfa with barberry leaf on growth performance and blood indices in ostrich

M. Afshin^{1*}, N. Afzali², S. J. Hosseini-Vashan³, A. Hajibabaei⁴

1. Ph.D. Student, Department of Animal and Poultry Science, College of Agriculture, University of Birjand, Birjand, Iran

2. Professor, Department of Animal and Poultry Science, College of Agriculture, University of Birjand, Birjand, Iran

3. Associate Professor, Department of Animal and Poultry Science, College of Agriculture, University of Birjand, Birjand, Iran

4. Assistant Professor, Department of Animal and Poultry Science, University of Pretoria, Pretoria, South Africa

(Received: 29-07-2021 – Accepted: 16-04-2022)

Introduction: The term "Livestock Revolution" was coined to describe the projected increase in demand for animal products due to population growth, increased income, and urbanization in developing countries. In this context, a decision to rear well-adapted livestock species, like the ostrich, could be effective in meeting present and future demands for animal products in a sustainable manner. On the other hand, most of the ostrich production costs are associated with the feeding price similar to broiler chickens. Due to the high ability of ostrich regarding fiber consumption, it is expected that ostriches can benefit from cheaper native foods such as barberry leaves. Ostrich digestive system has a great ability to use fiber diets due to having a long rectum (about eight meters). Furthermore, the microbial population of the cecum and colon in ostrich is similar to the rumen. The total area of barberry cultivation in Iran was reported to be 16007 hectares in 2017 and more than 14700 hectares of that were placed in South Khorasan. The amount of foliage of each barberry shrub is between three to five kg dry mater which remains almost unused after fruit harvesting. Hence, large amounts of branches and leaves from barberry harvesting could be considered agricultural residues for usage in animal feeding, annually. This study aimed to study the effect of replacing dietary alfalfa with barberry leaf on growth performance and blood indices in ostrich.

Materials and methods: The effects of replacing dietary alfalfa with barberry leaf on ostrich growth performance and some blood parameters were investigated using 20 ostriches (two to seven months of age) in a completely randomized design with five treatments (four replicates each). Barberry leaves and alfalfa used in this study were prepared manually from South Khorasan farms. Then samples were separately pooled and grounded in a hammer mill and were transferred to the laboratory to determine the amount of crude energy, dry matter, crude fat, crude protein, ash, neutral detergent fiber, and acid detergent fiber (all in three replications). The experimental diets were prepared by replacing alfalfa at 0, 25, 50, 75, and 100% with barberry leaf. Diets contain the same metabolizable energy and crude protein. Ostriches had free access to feed and water during the trial. Feed intake and body weight gain of each experimental unit were measured at 60, 120, and 210 days of age, and the feed conversation ratio (FCR) was calculated. At 90 and 210 days of age, blood samples were harvested from the wing vein of ostrich using tubes containing Li-heparin as an anticoagulant, then the blood samples were centrifuged at 3000 × g, 15 min at room temperature, and stored at -20 °C temperature for later analysis. The plasma concentrations of glucose, cholesterol, triglycerides, high-density lipoprotein (HDL), protein, and albumin as well as the activity of aspartate

^{*} Corresponding author: Mojtaba.Afshin1371@gmail.com

aminotransferase (AST) and alanine aminotransferase (ALT) were determined by auto-analyzer spectrophotometry according to the procedures of the manufacturers.

Results and discussion: The results revealed that dry matter intake (DMI) was enhanced with increasing dietary levels of barberry leaf (P < 0.05). These findings showed the favorable effects of barberry leaves on feed intake. One of the main reasons associated with the reduction of dry matter consumption following the inclusion of agricultural by-products is the high amount of phenolic compounds, especially the tannins of these products. Barberry leaves have a low concentration of phenolic compounds (especially tannins) compared to other by-products such as pistachio peel, pomegranate pulp, Elaeagnus angustifolia leaves, etc. Substitution of alfalfa hay with barberry leaf at 50% of the diet significantly increased daily weight gain compared to the control group (P < 0.05). In the whole experimental period, FCR was lower in the diet containing 50% of barberry leaf than in the diet with 100% replacement of alfalfa with barberry leaf (P < 0.05). Increasing the FCR in the diet by replacing more than 50% of barberry leaves can be related to the reduction of the digestibility of the diet due to a decrease in the particle size of barberry leaves as well as its nature after milling compared to alfalfa and the reduction of the supply of amino acid profile due to synergy of two sources of alfalfa and barberry leaves. The highest concentration of plasma glucose at 90 and 210 days of age (191.33 and 193.3, respectively) were observed in the control diet. Numerous studies have reported the hypoglycemic effects of barberry. Replacement of 50, 75, and 100% of alfalfa with barberry leaf decreased significantly the plasma activity of ALT as compared to the control group (P < 0.05). Although there are no reports of the use of barberry leaves or its active ingredient (berberine) in ostrich, previous reports have shown that the use of barberry fruit extract reduced liver enzyme concentrations.

Conclusions: Overall, the results of the current study showed that alfalfa hay could be replaced partially or completely with barberry leaves in the diet of ostriches without severe deleterious effects on performance. Replacement of 50% of alfalfa with barberry leaf would recommend for use in ostrich diets.

Keywords: Barberry leaf, Performance, Blood parameters, Ostrich, Alfalfa

How to cite this article:

Afshin M., Afzali N., Hosseini-Vashan S. J. and A. Hajibabaei. 2022. Effect of replacing dietary alfalfa with barberry leaf on growth performance and blood indices in ostrich. Animal Production Research, 11(3): 83-92. doi: 10.22124/AR.2022.20184.1638

Artima Bachaster Reserval

سال یازدهم/شماره سوم/پاییز ۱۴۰۱ (۹۲–۸۳)

مقاله پژوهشی

اثر جایگزینی یونجه جیره با برگ زرشک بر صفات عملکردی و شاخصهای خونی شترمرغ

مجتبی افشین'*، نظر افضلی'، سید جواد حسینی واشان"، علی حاجی بابائی[†]

۱- دانشجوی دکتری تغذیه دام، گروه علوم دام و طیور، دانشکده کشاورزی، دانشگاه بیرجند

۲- استاد، گروه علوم دام و طیور، دانشکده کشاورزی، دانشگاه بیرجند

۳- دانشیار، گروه علوم دام و طیور، دانشکده کشاورزی، دانشگاه بیرجند

۴- استادیار، گروه علوم دامی، دانشگاه پرتوریا، آفریقای جنوبی

(تاریخ دریافت: ۱۴۰۰/۰۵/۰۷ – تاریخ پذیرش: ۱۲۷/۱/۰۱)

چکیدہ

اثر جایگزینی جیرهای یونجه با برگ زرشک بر عملکرد و برخی فراسنجههای خونی شترمرغهای پرواری با استفاده از ۲۰ قطعه جوجه شترمرغ پرواری (از سن دو تا هفت ماهگی) در قالب یک طرح کاملاً تصادفی با پنج تیمار و چهار تکرار بررسی شد. تیمارهای آزمایشی شامل: ۱) شاهد (بدون برگ زرشک)، ۲) جایگزینی ۲۵ درصد یونجه با برگ زرشک، ۳) جایگزینی ۵۰ درصد یونجه با برگ زرشک، ۴) جایگزینی ۷۵ درصد یونجه با برگ زرشک، و ۵) جایگزینی ۱۰۰ درصد یونجه با برگ زرشک، ۳) جایگزینی ۵۰ درصد یونجه با برگ افزایش درصد جایگزینی ۷۵ درصد یونجه با برگ زرشک، و ۵) جایگزینی ۱۰۰ درصد یونجه با برگ زرشک، ۳) جایگزینی ۵۰ درصد یونجه با برگ زرشک سبب افزایش وزن روزانه در مقایسه با تیمار شاهد شد (۵۰/۰۰). در کل دوره، ضریب تبدیل خوراک شترمرغها در جیره با زرشک سبب افزایش وزن روزانه در مقایسه با تیمار شاهد شد (۵۰/۰۰). در کل دوره، ضریب تبدیل خوراک شترمرغها در جیره با نسبت جایگزینی ۵۰ درصد، کمتر از جیره با نسبت جایگزینی ۱۰۰ درصد برگ زرشک بود (۵۰/۰۰). بالاترین غلظت گلوکز در ۹۰ و ۲۱۰ روزگی به ترتیب ۱۹۱/۳۳ و ۳۰/ ۱۹۳ میلی گرم در دسیلیتر در جیره شاهد مشاهده شد (۵۰/۰۰). جایگزینی ۵۰، ۷۵ و (۷ ۱۰۰ درصد یونجه با برگ زرشک سبب کاهش معنی دار غلظت آلانین آمینوترانسفراز پلاسما در مقایسه با تیمار شاهد معنی دار نقالانین آمینوترانسفراز پلاسما در مقایسه با تیمار شاهد شد (۵/۰۰). و ۲۱۰ درصد یونجه با برگ زرشک سبب کاهش معنی دار غلظت آلانین آمینوترانسفراز پلاسما در مقایسه با تیمار شاهد شد (۵/۰۰). نتایج به دست آمده از این پژوهش نشان می دهد جایگزینی ۵۰ درصدی یونجه با برگ زرشک در جیره شترمرغهای پرواری قابل توصیه است.

واژههای کلیدی: برگ زرشک، عملکرد، شاخصهای خونی، شترمرغ، یونجه

doi: 10.22124/AR.2022.20184.1638

^{*} نويسندهٔ مسئول: Mojtaba.Afshin1371@gmail.com

مقدمه

در سالهای اخیر، پرورش شترمرغ بهطور گسترده در کشور افزایش یافته است. علت این گسترش، تولید گوشت با چربی کمتر و پروتئین و مواد معدنی بالاتر نسبت به گوشت گاو و جوجه گوشتی، چرم مناسب، روغن با کیفیت بالا و پرهای تزئيني است (Naseva et al., 2013; Faghani and Doosti,) 2009). یرورش این یرنده در نواحی گرم و خشک عمومیتر است، زیرا این یرنده بهطور قابلملاحظهای نسبت به گرما مقاوم بوده و نیاز به آب اندکی دارد و مقاومت آن در مناطق سردسير نيز مناسب است (Hinckley et al., 2005). هم-چنین، دستگاه گوارش شترمرغ به دلیل دارا بودن پسروده طویل (حدود هشت متر)، توانایی زیادی در استفاده از خوراک-هاى اليافي دارد (Cooper et al., 2004; Mousavi et al.,) هاى اليافي دارد (2016). جمعیت میکرویی سکوم و روده بزرگ شترمرغ (از سه هفتگی به بالا) مانند شکمبه عمل میکند (Varastegani et) al., 2014). بر اساس مشاهدات (2020). بر اساس مشاهدات (al., *al.* افزایش سطح الیاف محلول و نامحلول در جیره شترمرغ-ها، اثر منفی بر عملکرد و شاخصهای خونی ندارد و استفاده از سطوح الياف ١١/٥–٧/٥ درصد الياف محلول و ٢٠–١۶ درصد الیاف نامحلول در جیره پیش آغازین (یک تا دو ماهگی)، ۱۱/۶–۷/۶ درصد الیاف محلول و ۲۴–۲۰ درصد الیاف نامحلول در جیره آغازین (سه تا چهار ماهگی)، ۱۲/۲۵–۸/۲۵ درصد الیاف محلول و ۲۹/۵–۲۵/۵ درصد الیاف نامحلول در جیره رشد (پنج تا شش ماهگی) شترمرغها توصیه می شود. دانش تغذیه شترمرغ در مقایسه با تغذیه سایر طیور هنوز در مراحل ابتدایی قرار دارد. همانند جوجههای گوشتی، بخش عمده هزینه پرورش شترمرغ (بین ۶۰ تا ۷۵ درصد) مربوط به تغذیه است (Brand et al., 2018). با توجه به محدودیت منابع طبیعی، تغییرات آب و هوایی و هزینههای زیاد خوراک، تأمین خوراک برای دامها، بزر گترین محدودیت محسوب می شود (Makkar et al., 2014). کمبود خوراک دام تولیدی در کشور و محدودیت مراتع موجود، اهمیت شناسایی و استفاده صحیح از بقایای کشاورزی را ضروری مینماید (Dehghan and Tahmasebi, 2010). محصولات فرعي کشاورزی بهطور طبیعی از مولکول های زیست فعال غنی بوده

و از راه افزایش ظرفیت آنتی اکسیدانی و آثار مؤثر بر درمان بیماریها و کاهش هزینههای تولید، موجب بهبود کیفیت فرآوردههای دامی میشوند (Vasta et al., 2011). زرشک درختچهای بومی ایران، با ارتفاع ۳/۵ متر، خودگردهافشان از تیره زرشکیان است که در جنگلهای اروپا و ايران بهطور طبيعي ميرويد (Fallahi et al., 2010). كل سطح زیر کشت زرشک در ایران در سال ۱۳۹۶ مقدار ۱۶۰۰۷ هکتار گزارش شده است که بیش از ۱۴۷۰۰ هکتار آن در خراسان جنوبی است. در سال ۱۳۹۶، ۱۹۳۷۳ تن محصول با متوسط عملکرد برابر با ۱۳۰۳ کیلوگرم در هکتار (زرشک خشک) برداشت شده است (Anonymous, 2017). میزان شاخ و برگ خشک پس از برداشت محصول از هر اصله در خچه زرشک بین سه تا پنج کیوگرم گزارش شده است .(Daneshvar and Mazhari, 2000; Modaresi et al., 2014) برداشت زرشک به روش شاخهچینی، متداول ترین روش برداشت محصول است. در این روش، محصول برداشت شده به همراه شاخه و برگ خشک شده و پس از دو مرحله بوجاری، برگهای جدا شده در کارگاهها و کارخانجات محلی باقی مى ماند (Ghavipanje and Fathi Nasri, 2020). از اين رو، سالانه حجم زیادی شاخه و برگ حاصل از برداشت محصول زرشک در کشور بدون استفاده باقی میماند (Ghavipanje and Fathi Nasri, 2020). زرشک در شرایط کمبود بارندگی و کمآبی، کاهش رطوبت نسبی هوا در تابستان، شوری آب و قلیایی بودن خاکها به خوبی رشد مینماید (Maghsodi 2010). بخشهای مختلف گیاه زرشک شامل ریشه، یوست، ساقه، برگ و میوه از نظر خواص درمانی و مصارف خوراکی، در صنایع غذایی و صنعتی از دیرباز مورد توجه مردم بوده است (Maghsodi, 2010). تركيبات متنوعي اعم از آلكالوئيدها، فلاونوئيدها، استرولها، آنتوسيانينها، ويتامينها و کاراتنوئیدها از بخشهای مختلف گیاه زرشک، جداسازی و شناسایی شده است (Karimov, 1993) و ترکیبات بربرین، بربامین و یالماتین مهمترین اجزای فعال این گیاه هستند (Ivanovska *et al.*, 1996). بربرین دارای پتانسیل زیادی در استفاده به عنوان دارو است و طيف وسيعي از آثار فارماکولوژیکی از قبیل بهبود دیابت ۱ و ۲، کاهش گلوکز خون، بهبود لیپیدهای سرم و انسولین، افزایش ترشح

انسولین، ترمیم جراحات بافت پانکراس، کاهش مقاومت انسولینی، افزایش عملکرد کبد، کاهش تنش اکسیداتیو، کاهش کلسترول کل و لیپوپروتئین با چگالی پایین، آثار ضدباکتریایی و ضد میکروبی، ویژگیهای ضدالتهابی و کاهش فشار خون را نشان داده است (, Pirillo and Catapano, 2015). با توجه به اینکه بخش عمده هزینه پرورش شترمرغ مربوط به تغذیه است و توانایی بالای شترمرغ در مصرف الیاف، انتظار میرود بتوان با بهرهمندی از خوراکهای ارزان بومی نظیر برگ زرشک، جیرهای با قیمت پایین را در اختیار شترمرغها قرار داد. روی آوردن به استفاده از منابع خوراک بومی و دامهای مقاوم به شرایط منطقه از اولویتهای بررسی اثر جایگزینی جیرهای یونجه با برگ زرشک بر عملکرد و برخی فراسنجههای خونی شترمرغهای پرواری بود.

مواد و روشها

به منظور ارزیابی اثر جایگزینی یونجه با برگ زرشک خشک در جیره شترمرغها، برگ زرشک و یونجه مورد استفاده در این تحقیق از مزارع استان خراسان جنوبی تهیه و سپس نمونههای یونجه و برگ زرشک (در سه تکرار) به آزمایشگاه منتقل شده و پس از آسیاب، میزان انرژی خام، ماده خشک، چربی خام، پروتئین خام و خاکستر بر اساس روشهای ییشنهادی AOAC (1997) تعیین شد. الیاف نامحلول در شوینده خنثی و اسیدی به روش (1991) Van Soest et al. اندازه گیری شد. این آزمایش با استفاده از ۲۰ قطعه شترمرغ در قالب پنج تیمار و چهار تکرار اجرا شد. تیمارهای آزمایشی شامل: ۱) شاهد (بدون برگ زرشک)، ۲) جایگزینی ۲۵ درصد یونجه با برگ زرشک، ۳) جایگزینی ۵۰ درصد یونجه با برگ زرشک، ۴) جایگزینی ۷۵ درصد یونجه با برگ زرشک، و ۵) جایگزینی ۱۰۰ درصد یونجه با برگ زرشک، بودند. شترمرغ-ها از سن دو تا هفت ماهگی جهت بررسی اثر تیمارها بر شاخصهای موردنظر، در واحدهای آزمایش انفرادی قرار داده شدند. جیره مورد استفاده بهصورت کاملاً مخلوط و آزادانه در اختیار شترمرغها قرار گرفت و به گونهای تنظیم شد که حاوی انرژی سوخت و ساز و پروتئین خام یکسانی باشد. جیرهها بر اساس توصيه (Cilliers (1994 به سه دوره پيشآغازين (صفر

تا دو ماهگی)، آغازین (دو تا چهار ماهگی) و رشد (چهار تا هفت ماهگی) تقسیم شد. جیره پیش آغازین (پروتئین خام ۲۳ درصد، چربی خام ۱/۸ درصد، الیاف خام ۶/۵ درصد و انرژی قابل سوخت و ساز ۳۱۰۰ کیلوکالری بر کیلوگرم) به-صورت آزاد برای همه شترمرغها تا سن دو ماهگی مورد استفاده قرار گرفت. جیرهها با استفاده از نرم افزار UFFDA و براساس توصيه (Cilliers (1994) و Scheideler and Sell (1996) تنظيم شدند (جدول ۱). خوراک مصرفی، افزایش وزن و ضریب تبدیل خوراک در دورههای آغازین (دو تا چهار ماهگی) و رشد (چهار تا هفت ماهگی) و کل دوره آزمایش (دو تا هفت ماهگی) محاسبه شد. در ۹۰ و ۲۱۰ روزگی از سیاهرگ بال شترمرغها خون گیری انجام شد و نمونههای خون درون لولههای دارای ماده ضد انعقاد هپارین ریخته شدند. سپس نمونهها با دور ۳۰۰۰ به مدت ۱۵ دقیقه سانتریفیوژ شدند. نمونههای پلاسما جدا شده و تا زمان انجام آزمایش در دمای ۲۰- درجه سلسیوس نگهداری شدند. غلظت شاخصهای خونی گلوکز، کلسترول، تری گلیسرید و لیپوپروتئین با چگالی بالا (HDL)، پروتئین و آنزیمهای كبدى آسپارتات آمينوترانسفراز و آلانين آمينوترانسفراز با کیتهای شرکت یارس آزمون، بر پایه روشهای استاندارد آزمایشگاهی و به وسیله دستگاه طیفسنجی نوری (اتوآنالایزر) جسان ایتالیا مدل ۲۰۰ اندازه گیری شدند. دادههای حاصل از آزمایش بر اساس ارزیابی اندازهگیریهای تکرار شده در زمان و در قالب طرح کاملاً تصادفی با رویه Mixed نرم افزار آماری SAS ویرایش ۹/۴ مورد تجزیه و تحلیل آماری قرار گرفت و مدل آماری شامل آثار ثابت جیرهها، زمان نمونه گیری و اثر متقابل جیره و زمان به شرح زیر بود. همچنین اثر انفرادی هر یرنده به عنوان عامل تصادفی

 $Y_{ijkl} = \mu + T_i + A_{j(i)} + W_k + T_i \times W_j + e_{ijkl}$

که در این مدل، Y_{ijkl} : متغیر وابسته یا مشاهدات صفات، μ : میانگین جمعیت برای متغیر مورد نظر، T_i : اثر تیمار، $A_{j(i)}$: اثر T_i : اثر زمان رکوردگیری، T_i : T_i تصادفی دام زام در تیمار i، W_k i، W_k : اثر زمان رکوردگیری، W_j : اثر متقابل بین تیمار و زمان و B_{ijkl} : اثر تصادفی مربوط به خطای آزمایشی است.

در مدل گنجانده شد:

Table 1. Ingredients and nutrient composition of experimental diets										
Ingradiants	Starter (2-4 months)					Grower (4-7 months)				
ingreatents	$T1^1$	T2	T3	T4	T5	T1	T2	Т3	T4	T5
Corn	47.5	46.85	46.14	44.87	43.52	43.55	43.41	42.51	39.07	36.35
Soybean meal	26.3	26.78	27.06	27.75	28.50	10.86	12.44	12.69	15.35	17.07
Alfalfa	22	16.50	11	5.50	0	40	30	20	10	0
Barberry	0	5.50	11	16.50	22	0	10	20	30	40
Calcium	1	1	1.02	1 10	1 1 5	1.21	1.50	1 70	2	2 20
Carbonate	1	1	1.02	1.10	1.15	1.21	1.50	1.70	2	2.20
Dicalcium	1.03	1.01	1 18	1 29	1 44	1.82	1.80	1.80	1.80	1.80
phosphate	1.05	1.01	1,10	1,29	1.77	1.02	1.00	1,00	1.00	1.00
Oil	1.08	1.32	1.57	1.89	2.22	0.2	0.2	0.3	0.8	1.4
Salt	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Vitamin	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
supplement ²	0.25	0.25	0.23	0.25	0.25	0.23	0.25	0.25	0.23	0.23
Mineral	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
supplement ³	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
DL-Methionine	0.18	0.21	0.20	0.20	0.21	0.06	0.06	0.09	0.10	0.11
L- Lysine	0.08	0.08	0.08	0.14	0.21	0	0	0	0	0
Calculated analysis						1				
Metabolizable	2.85	2.85	2.85	2.85	2.85	2 79	2.77	2.75	2.75	2.75
energy (Mcal/kg)	2.02	2100	2.02	2.00	2.00	2.73	2., ,	2., 0	2.70	2.70
Crude protein (%)	19.30	19.20	19.05	19	19	16	16	16	16	16
Calcium (%)	0.85	0.85	0.85	0.85	0.85	1.50	1.50	1.50	1.50	1.50
Available	0.42	0.42	0.42	0.42	0.42	0.60	0.60	0.60	0.60	0.60
phosphorus (%)										
NDF (%)	16.10	16.10	16.10	16.10	16.10	19.30	19.30	19.30	19.30	19.30
Lysine (%)	1.01	1	0.99	1.03	1.07	0.76	0.76	0.76	0.76	0.76
Methionine +	0.78	0.77	0.76	0.76	0.76	0.65	0.65	0.65	0.65	0.65
cysteine (%)										

جدول ۱ – ترکیب مواد خوراکی و مواد مغذی جیره های آزمایشی dia L Incrediants and subtriant accomposition of averaging dia

¹ The experimental treatments included the replacement of dietary alfalfa with barberry leaf at 0 (T1), 25 (T2), 50 (T3), 75 (T4), and 100 (T5) percentages.

² Each 5 kg of vitamin premix provided the following: vitamin A, 14,000,000 IU; vitamin D₃, 4,000,000 IU; vitamin E, 100,000 mg; vitamin K₃, 4000 mg; vitamin B₁, 4000 mg; vitamin B₂, 10,000 mg; vitamin B₃, 20,000 mg; vitamin B₅, 80,000 mg; vitamin B₆, 5000 mg; vitamin B₉, 4000 mg; vitamin B₁₂, 100 mg; vitamin H₂, 300 mg; vitamin C, 25,000 mg; L-carnitine, 165,000 mg; antioxidant, 1500 mg.

³ Each 5 kg of mineral premix provided the following: Mg, 7000 mg; Mn, 170,000 mg; Fe, 50,000 Mg; Zn, 126,000 mg; Cu, 21,000 mg; I, 1400 mg; Se, 450 mg; Co, 140 mg; S, 20000 mg; choline chloride, 500,000 mg; antioxidant, 1500 mg.

در شوینده اسیدی، ترکیبات فنلی و تانن برگ زرشک به ترتیب ۹۲/۴۶، ۱۳/۹۴، ۱۸/۱۳، ۱۸/۱۹ و ۹۲/۴ درصد گزارش شده است و نیز میزان انرژی قابل سوخت و ساز برگ زرشک برابر با ۵/۶۳ مگاژول در کیلوگرم ماده خشک Ghavipanje (2016) مگاژول در کیلوگرم ماده خشک میزان ماده خشک، ماده آلی، پروتئین خام، انرژی خام (مگا-ژول/کیلوگرم)، الیاف نامحلول در شوینده خنثی، الیاف نامحلول در شوینده اسیدی، چربی خام، خاکستر، ترکیبات فنلی و تانن به ترتیب ۹۲/۰۲، ۹۴/۰۴، ۹۲/۰۴، ۱۰/۹، ۳۰/۸ دادهها بهصورت میانگین حداقل مربعات و خطای استاندارد گزارش شد و میانگینها با استفاده از آزمون توکی-کرامر با گزینه PDIFF در سطح معنیداری برابر ۰/۰۵ مقایسه شدند.

نتايج و بحث

ترکیب شیمیایی برگ زرشک و یونجه در جدول ۲ ارائه شده است. نتایج نشان داد که ترکیب شیمیایی برگ زرشک مورد استفاده، تقریباً مشابه سایر مطالعات در این خصوص است. در مطالعه (2012) Mokhtarpour *et al. م*یزان ماده آلی، پروتئین خام، الیاف نامحلول در شوینده خنثی، الیاف نامحلول

در گزارشها را میتوان به دلیل تفاوتهای موجود در شرایط آب و هوایی و محیطی، شرایط مختلف فیزیولوژیکی و ژنتیکی گیاه و همچنین نحوه برداشت برگ زرشک دانست (Modaresi *et al.*, 2014).

اثر تیمارهای مختلف آزمایشی بر مصرف خوراک شترمرغهای پرواری در طول دوره آزمایش در جدول ۳ نشان داده شده است. جایگزینی یونجه با برگ زرشک در جیره شترمرغهای یرواری، بر مصرف خوراک اثر گذاشت. جایگزینی مقادیر بالاتر از ۲۵ درصد یونجه با برگ زرشک، ماده خشک مصرفی را در مقایسه با گروه شاهد افزایش داد (۵۰/۰۰). مصرف خوراک در جیره با جایگزینی ۷۵ درصد یونجه با برگ زرشک در کل دوره آزمایشی (دو تا هفت ماهگی) و جیره با جایگزینی ۱۰۰ درصد یونجه با برگ زرشک در دورههای آغازین، رشد و کل دوره آزمایشی در مقایسه با جیره شاهد بالاتر بود (۵۰/۰۵). یافتههای مطالعه حاضر مبنی بر آثار مثبت برگ زرشک بر مصرف خوراک با نتایج سایر محققین در توافق است. Ghavipanje (2016) گزارش کردند جایگزینی یونجه با برگ زرشک خشک (در مقادیر ۵۰ و ۱۰۰ درصد) در جیره بز، به عنوان منبع علوفهای با قیمت مناسب و غنی از ترکیبات ياداكسنده طبيعي، نهتنها عملكرد دام ١ كاهش نداد بلكه آثار مثبتی را نیز بر جای گذاشت. با افزایش سطح برگ زرشک در جیره، مصرف خوراک بزها افزایش یافت. در تمامی تحقیقات، دلیل کاهش ماده خشک مصرفی با افزایش سطح استفاده از فرآوردههای فرعی کشاورزی، میزان بالای ترکیبات فنولی به ویژه تانن این محصولات ذکر شده است، چراکه می توانند موجب كاهش خوش خوراكي و متعاقباً كاهش مصرف خوراك دام شوند، اما در مورد برگ زرشک، غلظت ترکیبات فنلی آن (به ویژه تانن) در مقایسه با سایر فرآوردههای فرعی نظیر

Table 2. Chemical composition of barberry leaf and alfalfa								
Parameter	Barberry leaf	Alfalfa						
Dry matter (%)	94	92.53						
Protein (%)	12.08	17.39						
Gross energy (Mcal/kg)	4.007	4.050						
Crude fat (%)	2.20	1.70						
Ash (%)	9	8.30						
NDF (%)	31.70	32.62						
ADF (%)	19.04	17.71						

جدول ۲- ترکیب شیمیایی برگ زرشک و یونجه

یوست یسته، تفاله انار، برگ سنجد و غیره به شکل مشهودی Jonnelly and Anthony, 1969;) پايين تر است (Donnelly and Anthony, 1969) Bashtani et al., 2014; Modaresi et Ghavipanje, 2016 (al., 2014;). جایگزینی ۵۰ درصد یونجه با برگ زرشک سبب افزایش وزن روزانه در مقایسه با تیمار شاهد در دوره رشد و کل دوره آزمایش شد (۹<۰/۰۵). در کل دوره آزمایشی، جایگزینی ۱۰۰ درصد در مقایسه با جایگزینی ۵۰ درصد برگ زرشک باعث افزایش معنی دار (۹۵/۰۰) در ضریب تبدیل خوراک شترمرغها شد (جدول ۳). افزایش ضریب تبدیل خوراک در جیره با جایگزینی بیش از ۵۰ درصد برگ زرشک می تواند با کاهش گوارش پذیری جیره به دلیل کاهش اندازه ذرات برگ زرشک با توجه به ماهیت آن بعد از آسیاب شدن در مقایسه با یونجه و کاهش تأمین نیمرخ اسیدآمینهای به دلیل همافزایی دو منبع یونجه و برگ زرشک مرتبط باشد. جدول ۴ اثر تیمارهای مختلف آزمایشی بر غلظت پلاسمایی شاخصهای خونی شامل غلظت کلسترول، تری گلیسرید، ليپوپروتئين با چگالي بالا، پروتئين، آلبومين، گلوکز، آلانين-آمینوترانسفراز و آلانینآمینوترانسفراز شترمرغها را در ۹۰ و ۲۱۰ روزگی نشان میدهد. تیمارهای آزمایشی اثر معنیداری بر غلظت كلسترول، ترى گليسريد، ليپوپروتئين با چگالى بالا، پروتئين، آلبومين و آلانينآمينوترانسفراز خون شترمرغها نداشتند. غلظت گلوکز پلاسما تحت تأثیر تیمارهای آزمایشی تغییر نشان داد (P<٠/٠۵). بالاترین غلظت گلوکز در ۹۰ و ۲۱۰ روزگی در جیره شاهد به ترتیب با مقادیر ۱۹۱/۳۳ و ۱۹۳/۳۰ مشاهده شد. جایگزینی ۱۰۰ درصد یونجه با برگ زرشک در ۹۰ روزگی و جایگزینی ۵۰، ۷۵ و ۱۰۰ درصد یونجه با برگ زرشک در ۲۱۰ روزگی سبب کاهش غلظت پلاسمایی گلوکز در مقایسه با تیمار شاهد شد (۵/۰۵).

Table 3. The effect of replacing alfalfa with barberry leaf on the performance of ostrich										
Item	Age	Treatments ¹						P-value		
	(month)	T1	T2	Т3	T4	T5	SEIVI -	Treat	Time	interaction
EI	2-4	1028.6 ^b	1028.4 ^b	1120.1 ^b	1231 ^{ab}	1343.3ª	47.12	0.0009		
ΓI	4-7	1925.0 ^b	1880.4 ^c	2033.5°	2075 ^{ab}	2131.9ª	39.04	0.002	0.0001	0.1030
(g/d)	2-7	1566.4 ^b	1539.6 ^b	1668.1^{ab}	1737.4ª	1816.7ª	38.89	0.0007		
	2-4	315.8 ^b	318.3 ^b	399.5ª	361.6 ^{ab}	367.9 ^{ab}	15.89	0.0092		
ADG (a/d)	4-7	439.1	419.7	481.3	438.3	441.9	23.66	0.4810	0.0001	0.9071
(g/d)	2-7	389.8 ^b	379.1 ^b	448.6^{a}	4076 ^{ab}	412.3 ^{ab}	13.66	0.0253		
FCR	2-4	3.2	3.2	2.8	3.4	3.6	0.18	0.0555		
	4-7	4.4	4.4	4.2	4.7	4.8	0.23	0.3708	0.0001	0.9975
	2-7	4 ^{ab}	4^{ab}	3.7 ^b	4.2 ^{ab}	4.4 ^a	0.13	0.0248		

جدول ۳- اثر جایگزینی سطوح مختلف یونجه با برگ زرشک بر عملکرد شترمرغ ادامه موجوع محمد بسیم ایم ایم ایم این این مادهان و منبود اسم و با برگ زرشک از عملکرد شترمرغ

¹T1, T2, T3, T4, and T5 are 0, 25, 50, 75, and 100% replacement of alfalfa with barberry leaf, respectively.

² SEM: Standard error of the means

FI: Feed intake; ADG: Average daily gain; FCR: Feed conversion ratio

^{a-c} Means with different superscripts within a row differ significantly (P<0.05).

، خشک بر شاخصهای خون	لختلف يونجه با برگ زرشک	جدول ۴- اثر جایگزینی سطوح م
Table 4. Effect of replacing	g alfalfa with barberry le	eaf on blood indices of ostrich

Subject ²	Age	Treatment ¹					SEM3	<i>P</i> -value		
	(day)	T1	T2	Т3	T4	T5	SEM	Treat	Time	Interaction
Total cholesterol	90	145	180	125	167	144	16.79	0.24	0.0001	0.12
(mg/dL)	210	123	118	107.6	113.3	111.3	23.39	0.99	0.0001	0.15
TG	90	94	80	95.6	117.3	108	8.82	0.09	0.65	0.17
(mg/dL)	210	83.6	82.3	64	122	167	26.9	0.11		
HDL	90	10	17	20	14	13	3.26	0.65	0.50	0.89
(mg/dL)	210	15.3	17	13.6	13	15	3.82	0.95		
Total protein	90	3.13	3.1	2.9	3.3	3.1	0.12	0.35	0.0001	0.18
(g/L)	210	3.9	3.7	4.2	3.9	3.7	0.13	0.12		
Albumin	90	2.7	2.2	2.2	2.8	2.2	0.26	0.24	0.54	0.04
(g/L)	210	2.4	2.6	2.7	2.2	2.5	0.09	0.05		
Glucose	90	191.3ª	186 ^{ab}	182 ^{ab}	182.7 ^{ab}	169.7 ^b	4.42	0.04	0.006	0.26
(mg/dL)	210	193.3ª	176.7 ^{ab}	167 ^b	167 ^b	163 ^b	4.16	0.00		
AST	90	247	246	246	245	244	8.35	0.89	0.0001	0.002
(Unit/L)	210	223	202	159	228	1555	17.70	0.04	0.0001	
ALT	90	6	3	3	4	3	1.01	0.33	0.005	0.31
(Unit/L)	210	13.5 ^a	8^{ab}	5 ^b	6 ^b	5 ^b	1.86	0.04	0.005	

¹ T1, T2, T3, T4, and T5 are 0, 25, 50, 75, and 100% replacement of alfalfa with barberry leaf, respectively.

² TG: Triglyceride; HDL: High-density lipoprotein; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase

³ SEM: Standard error of the means

^{a-c} Means with different superscripts within a row differ significantly (P<0.05).

۵۰، جایگزینی ۵۰، (Ashraf et al., 2012; Ghavipanje, 2016) ۷۵ و ۱۰۰ درصد یونجه با برگ زرشک سبب کاهش فعالیت پلاسمایی آنزیم آلانینآمینوترانسفراز (ALT) خون شترمرغها در مقایسه با تیمار شاهد شد (۵۰/۰۰). اگرچه تاکنون گزارشی در خصوص استفاده از برگ زرشک یا ماده موثره آن (بربرین) در شترمرغ وجود ندارد، اما گزارشات پیشین نشان محققان گزارش کردند استفاده از عصاره ریشه زرشک روی موشهای صحرایی دیابتی دارای آثار هیپوگلایسمیک است و این اثر را از راه بهبود بافت پانکراس و افزایش ترشح انسولین انجام میدهد (Ashraf et al., 2012). همچنین پژوهشهای متعددی آثار هیپوگلاسیمیک گیاه زرشک را گزارش دادهاند Meliani et al., 2011; Ahangarpour et al., 2012;)

داد استفاده از عصاره میوه زرشک در موشهای صحرایی دیابتی موجب کاهش سطح آنزیمهای کبدی شد (Ashraf et . (2013) در همین راستا، گزارش . Malekinezhad et al (2020) نشان داد استفاده از بربرین موجب کاهش معنیدار آنزیم آلانین آمینوترانسفراز (ALT) و آسپارتات آمینوترانسفراز (AST) در جوجههای گوشتی تغذیه شده با جیره آلوده به آفلاتوکسن B1 و اکراتوکسین A شد.

فهرست منابع

- Ahangarpour A., Eskandari M., Vaezlari A. and Hashemi Tabar M. 2012. Effect of aqueous and hydroalcoholic extract of beberis vulgaris on insulin secretion from islets of langerhans isolated from male mice. Yasuj University of Medical Sciences Journal, 17(4): 289-298. (In Persian).
- Anonymous. 2017. Agricultural Statistics, Ministry of Agricultural Jihad. Office of Technology and Information, Tehran, Iran.
- Ashraf H., Heidari R., Nejati V. and Ilkhanipoo M. 2012. Preventive effect of berberis integerrima on the serum levels of glucose and lipids in streptozotocin (STZ)-induced diabetes in rats. Journal of Fasa University of Medical Sciences, 2(3): 148-155. (In Persian).
- Ashraf H., Zare S. and Farnad N. 2013. The effect of aqueous extract of barberry fruit on liver damage in streptozotocin induced diabetic rats. Journal of Shahrekord University of Medical Sciences, 15(6): 1-9. (In Persian).
- Association of Official Analytical Chemists (AOAC). 1997. Official methods of analysis, 18th ed. AOAC International, Gaithersburg, Maryland, USA.
- Bashtani M., Tehrani M. H., Naserian A. A. and Fathi M. H. 2013. The effect of different level of ziziphus jujube mill foliage on feed intake, blood metabolites and milk production and composition in fluffy goats. Iranian Journal of Animal Science Research, 5(2): 157-163. (In Persian).
- Bendich A. 1993. Physiological role of antioxidants in the immune system. Journal of Dairy Science, 76: 2789-2794.
- Brand T., Engelbrecht J., van der Merwe J. and Hoffman L. 2018. Feed preference of grower ostriches consuming diets differing in Lupinus angustifolius inclusion levels. South African Journal of Animal Science, 48(1): 170-185.
- Cilliers S. C. 1994. Evaluation of feedstuffs and the metabolisable energy and amino acid requirements for maintenance and growth in ostriches (*Struthio camelus*), Stellenbosch: Stellenbosch University, South Africa.
- Cloete S. W. P., Brand T. S., Hoffman L. C., Brand Z., Engelbrecht A., Bonato M., Glatz C. and Malecki I. A. 2012. The development of ratite production through continued research. World's Poultry Science Journal, 68: 323-334.
- Cooper R. G. and Mahroze K. M. 2004. Anatomy and physiology of the gastrointestinal tract and growth curves of the ostrich (*Struthio camelus*). Animal Science Journal, 75(6): 491-498.
- Dehghan M. and Tahmasebi R. 2010. Determination of chemical composition and digestibility by in vitro method of four agricultural by-products. Fifth National Conference on New Ideas in Agriculture. Islamic Azad University, Isfahan Branch. (In Persian).
- Daneshvar M. and Mazhari M. 2000. A socio-economic overview on importance of strategic agricultural crops in khorasan a case study of barberry. Agricultural Economics and Development, 30(8): 89-108. (In Persian).
- Donnelly E. D. and Anthony W. B. 1969. Relationship of tannin, dry matter digestibility and crude protein in *Sericea lespedeza*. Crop Science, 9(3): 361-362.
- Faghani M. and Doosti A. 2009. Sex determination in ostrich with the use of genetic markers using polymerase chain reaction. Veterinary Clinical Pathology. 3(3): 601-604. (In Persian).

نتيجەگيرى كلى

به تغذیه است و شترمرغ دارای پتانسیل بالا در مصرف الیاف است، بهرهمندی از خوراکهای ارزان بومی مانند برگ زرشک، جیرهای با قیمت پایین تر را در اختیار شترمرغها قرار میدهد. جایگزین کردن یونجه خشک با برگ زرشک در جیره شترمرغهای پرواری نه تنها عملکرد رشد را کاهش نداد بلکه آثار مثبتی را نیز بر جای گذاشت. با توجه به نتایج به دست آمده، جایگزینی ۵۰ درصدی یونجه با برگ زرشک در مقایسه با سایر تیمارهای آزمایشی قابل توصیه است.

با توجه به اینکه بخش عمده هزینه پرورش شترمرغ مربوط

- Fallahi J., Rezvani Moghaddam P. and Nassiri Mohalati M. 2010. Effect of harvesting date on quantitative and gualitative characteristics of seedless barberry (*Berberis Vulgaris*) fruit. Iranian Journal of Field Crops Research. 8(2): 225-234. (In Persian)
- Ghavipanje N. and Fathi Nasri M. H. 2020. Nutritive value, phenolic compounds and *in vitro* digestion parameters of barberry (*Berberis vulgaris*) harvest residues in comparison with alfalfa hay. Animal Production Research, 9(2): 79-90. (In Persian).
- Ghavipanje N. 2016. *In situ* and *in vitro* evaluation of *Berberis vulgaris* leaf and its using in feeding of Southern Khorasan crossbred goats. MSc Thesis, Faculty of Agriculture, Birjand University, Iran. (In Persian).
- Hinckley D., Park R., Xiong S., Andersen W. and Kooyman D. 2005. Identification and development of sex specific DNA markers in the Ostrich using polymerase chain reaction. International Journal of Poultry Science. 4(9): 663-669.
- Ivanovska N. and Philipov S. 1996. Study of the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. International Journal of Immunopharmacology, 18: 553-561.
- Karimov A. 1993. Berberis alkaloids. Chemistry of Natural Compounds, 29(4): 415-438.
- Maghsodi S. 2010. Barberry (Agriculture, industry, nutrition, and treatment). Iran Institute of Agricultural Science. Pp. 30-42. (In Persian).
- Makkar H. P. S., Tran G., Heuzé V. and Ankers P. 2014. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197: 1-33.
- Malekinezhad P., Ellestad L., Afzali N., Farhangfar S. H., Omidi A. and Mohammadi A. 2021. Evaluation of berberine efficacy in reducing the effects of *aflatoxin B1* and *ochratoxin A* added to male broiler rations. Poultry Science, 100(2): 797-809.
- Meliani N., Dib M. E. A., Allali H. and Tabti B. 2011. Hypoglycemia effect of *Berbrris vulgaris* L. in normal and streptozotocin induced diabetic rats. Asaian Pacific Journal of Tropical Biomedicine, 1: 468-471.
- Mirbehbahani S. M., Hosseini-Vashan S. J., Mojtahedi M., Farhangfar S. H. and Hosseini S. A. 2020. Soluble and insoluble fibers in ostrich nutrition: influences on growth performance and blood biochemical indices during different ages. Tropical Animal Health and Production, 52(6): 3665-3674.
- Modaresi S. J., Valizadeh R., Danesh Mesgaran M., Fathi Nasri M. H. and Khosravi F. 2014. Determining the nutritional value of barberry leaves and the effect of anti-tannin compounds on its phenolic compounds. Sixth Iranian Congress of Animal Sciences, Tabriz, Iran. (In Persian).
- Mokhtarpour A., Naserian A. and Pour Mollai F. 2012. Determination of chemical and phenolic composition and gas production in laboratory conditions. Fifth Iranian Congress of Animal Science, Isfahan, Iran. (In Persian).