شناسایی نشانه های انتخاب مرتبط با آترزی دستگاه گوارش در گوساله های هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک

2 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه ایلام

چکیده

ضایعات انسدادی دستگاه گوارش از مهمترین مشکلات مادرزادی هستند که نتیجه آن، مرگ و میر گوساله­ها در مدت کوتاهی بعد از تولد است. ژژنوم شایع­ترین مکان بعد از مری برای انسداد کامل یا آترزی است که فقدان مادرزادی یا انسداد کامل قسمتی از حفره روده است. شناخت زودرس آترزی برای پیشگیری از عوارض بعدی آن ضروری است. هدف پژوهش حاضر، شناسایی نشانه­های انتخاب با استفاده از آماره نااریب تتا مرتبط با آترزی دستگاه گوارش در گوساله­های شیری هلشتاین است. به این منظور، مجموع 466 حیوان برای 777962 جایگاه نشانگری چندشکلی تک نوکلئوتیدی (SNP) با استفاده از تراشه­های Illumina 777K BovineHD  تعیین ژنوتیپ شدند. پس از کنترل کیفیت داده­های اولیه در نهایت، 704242 نشانگر SNP و 466 رأس دام (375 رأس شاهد و 91 رأس موردی) وارد تجزیه­های بعدی شدند. با در نظر گرفتن صدک 9/99 کل ارزش­های تتا، هشت ناحیه ژنومی روی کروموزوم‌های 7، 12، 13، 21، 22، 23 (دو نقطه) و 29 شناسایی شدند. بررسی ژن­های گزارش شده در این مناطق نشان داد که در داخل یا مجاورت این نواحی، ژن­های CSF2، SIAH3، TMEM14A و SKIV2L قرار داشتند، که با رشد و توسعه جنین، طول روده کوچک، مرگ سلولی و انواع سرطان مرتبط هستند. همچنین بررسی بیوانفورماتیکی این مناطق نشان داد ژن­های موجود در این مناطق با جایگاه­های ژنی کنترل­کننده صفات کمّی مرتبط با حساسیت به بیماری و مسیرهای هستی­شناسی مرتبط با تنظیم تفرق و تمایز سلولی، فعالیت پروتئین­های کینازی و فعالیت سوخت و ساز سلولی هستند. نتایج این تحقیق می­تواند منبع اطلاعاتی ارزشمندی در زمینه شناسایی مناطق ژنومی و در نتیجه ژن­های مرتبط با آترزی در گاوهای هلشتاین فراهم آورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of selective signatures associated with gastrointestinal atresia in Holstein calves

نویسندگان [English]

  • H. Mohammadi 1
  • M. Shamsollahi 2
1 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
2 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture, University of Ilam, Ilam, Iran
چکیده [English]

Introduction: Obstructive gastrointestinal (GI) malformations are one of the most important congenital problems resulting in calf mortality within a few days of birth. The most common site for atresia, after the esophagus, is the jejunum. Jejunum atresia is the congenital absence or complete blockage of a part of the jejunum lumen. Early detection of intestinal obstruction is essential to prevent further complications. Intestinal atresia is an underdiagnosed congenital defect in cattle. It results in complete occlusion of the intestinal lumen and, unless surgically corrected, results in death or euthanasia of the affected calf. There is limited information on the incidence of this condition or risk factors, including predisposing alleles, associated with the defect. Atresia is a well-known congenital defect of the gastrointestinal system in calves and investigations into the etiology of this condition are warranted. Domestication and selection have significantly changed the behavioral and phenotypic traits in modern domestic animals. The selection of animals by humans left detectable signatures on the genome of modern dairy cattle. The identification of these signals can help us to improve the genetic characteristics of economically important traits in goats. Over the last decade, interest in the detection of genes or genomic regions that are targeted by selection has been growing. Identifying signatures of selection can provide valuable insights about the genes or genomic regions that are or have been under selection pressure, which in turn leads to a better understanding of genotype-phenotype relationships. This study aimed to identify the selection signatures using the unbiased theta method associated with gastrointestinal atresia in Holstein dairy calves.
Materials and methods: For calves with intestinal atresia, muscle tissue (>1 g) was collected from the Latissimus dorsi muscle postmortem, and submerged in RNA later solution. DNA samples from 91 atresia cases and 377 control animals were genotyped using the Illumina 777K BovineHD beadchip (Illumina Inc). The work described here is a case–control association study. Single nucleotide polymorphism (SNP) missing 5% of data, with MAF of <1% and Hardy–Weinberg equilibrium P-values <10−6 were removed. The genotyping efficiency for samples was also verified, and samples with more than 5% missing data were removed. Grouping was done to infer selection signatures based on FST statistic. The bioinformatics investigations were carried out using the Ensembl database for bovine genes (assembly ARS-UCD1.2), to identify potential candidate genes which already have been reported in/or surrounding genomic regions containing the peak of absolute extreme FST values. The regions corresponding to the upper and lower 0.01% of positive and negative obtained FST scores were considered regions under selection. Genes within a 500-kb span of the start and end of the QTL were identified using Ensembl 108 on the ARS-UCD1.2 bovine genome assembly implemented in biomart. Then, using the PANTHER database, the general biological function of the genes was checked. At this stage, it is assumed that genes that belong to a functional class can be considered as a group of genes that have some specific and common characteristics, and the quantitative trait loci (QTLs) in the selected region were extracted using the Animalgenome database, and the genes were compared with other researches. GeneCards (http://www.genecards.org) and UniProtKB (http://www.uniprot.org) databases were also used to interpret the function of the obtained genes.
Results and discussion: with a 99.90 percentile threshold of the obtained theta (θ) values, eight genomic regions on chromosomes 7, 12, 13, 21, 22, 23 (two regions), and 29 in the Holstein calves were identified. Further investigation using bioinformatics tools showed these genomic regions overlapped with the genes (CSF2, SIAH3, TMEM14A, and SKIV2L) associated with embryonic development, small intestine length, apoptosis, and several tumors. The population used in our study is small, owing to the challenge of collecting a substantial amount of blood on calves on commercial herds having received the diagnosis of gastrointestinal atresia and ready to be culled. Diagnosis and culling of gastrointestinal atresia animals are ineffective preventive measures.  Further work is required to identify which farm-specific or management risk factors contribute to the incidence of intestinal atresia.
Conclusions: The results of this study may provide an important source to facilitate the identification of genomic regions and then, the genes affecting gastrointestinal atresia in claves. However, further studies are warranted to refine the findings using a larger sample size, whole-genome sequencing, and/or high-density genotyping.Materials and Methods: For calves with intestinal atresia, muscle tissue (>1 g) was collected from the Latissimus dorsi muscle postmortem, submerged in RNA later solution. DNA samples from 91 atresia cases and 377 control animals were genotyped using the Illumina 777K BovineHD beadchip (Illumina Inc). The work described here is a case–control association study. SNP missing 5% of data, with MAF of <1% and Hardy–Weinberg equilibrium p-values <10−6 were removed. The genotyping efficiency for samples was also verified, and samples with more than 5% missing data were removed. Grouping was done to infer selection signatures based on FST statistic. The bioinformatics investigations were carried out using the Ensembl database (Cunningham et al., 2022) for bovine genes (assembly ARS-UCD1.2), to identify potential candidate genes which already have been reported in/or surrounding genomic regions containing the peak of absolute extreme FST values. The regions corresponding to the upper and lower 0.01% of positive and negative obtained FST scores were considered as regions under selection.
Genes within a 500-kb span of the start and end of the QTL were identified using Ensembl 108 on the ARS-UCD1.2 bovine genome assembly implemented in biomart. Then, using the PANTHER database, the general biological function of the genes was checked. At this stage, it is assumed that genes that belong to a functional class can be considered as a group of genes that have some specific and common characteristics, and the QTLs in the selected region were extracted using the Animalgenome database, and the genes were compared with other researches. GeneCards (http://www.genecards.org) and UniProtKB (http://www.uniprot.org) databases were also used to interpret the function of the obtained genes.
Results and Discussion with 99.90 percentile threshold of the obtained Theta (θ) values, eight genomic regions on chromosomes 7, 12, 13, 21, 22, 23 (2 regions), and 29 in Holstein calves breed were identified. Further investigation using bioinformatics tools showed these genomic regions overlapped with the genes (CSF2, SIAH3, TMEM14A, SKIV2L) associated with embryonic development, small intestine length, apoptosis, and several tumours. The population used in our study is small, owing to the challenge of collecting a substantial amount of blood on calves on commercial herds having received the diagnosis of gastrointestinal atresia and ready to be culled. Diagnosis and culling of gastrointestinal atresia animals are ineffective preventive measures. Further work is required to identify which farm-specific or management risk factors contribute to the incidence of intestinal atresia.
Conclusions: In conclusion, the results of this study may provide an important source to facilitate the identification of genomic regions and then, the genes affecting gastrointestinal atresia in claves. However, further studies are warranted to refine the findings using a larger sample size, whole-genome sequencing, and/or high density genotyping

کلیدواژه‌ها [English]

  • Genomic scan
  • Cell proliferation
  • Single nucleotide polymorphism
  • Candidate gene
  • Congenital defect
Abbasi Moshaii, B. (2018). Genomic scan for selection signatures and identification of some candidate regions associated with mastitis in German Holstein cattle. Ph.D. Thesis, Sari Agricultural Sciences and Natural Resources University, Iran. [In Persian]
Akey, J. M., Zhang, G., Zhang, K., Jin, L., & Shriver, M. D. (2002). Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12(12), 1805-1814. doi: 10.1101/gr.631202
Azizi, S., Mohammadi, R., & Mohammadpour, I. (2010). Surgical repair and management of congenital intestinal atresia in 68 calves. Veterinary Surgery, 39, 115-120. doi: 10.1111/j.1532-950X.2009.00611.x
Azizpour, N., Khaltabadi Farahani, A. H., Moradi, M. H., & Mohammadi, H. (2020). Genome-wide association study based on gene-set enrichment analysis associated with milk yield in Holstein cattle. Journal of Animal Science Research, 30(1), 79-92. doi: 10.22034/AS.2020.11009 [In Persian]
Bagheri, M., Mirai-Ashtiani, R., Moradi-Shahrbabak, M., Nejati-Javaremi, A., Pakdel, A., Von Borstel, U. U., Pimentel, E. C. G., & König, S. 2013. Selective genotyping and logistic regression analyses to identify favorable SNP-genotypes for clinical mastitis and production traits in Holstein dairy cattle. Livestock Science, 151, 140-151. doi: 10.1016/j.livsci.2012.11.018
Canive, M., González-Recio, O., Fernández, A., Vázquez, P., Badia-Bringué, G., & Lavín, J. L. (2021). Identification of loci associated with susceptibility to Mycobacterium avium subsp. paratuberculosis infection in Holstein cattle using combinations of diagnostic tests and imputed whole-genome sequence data. PLoS One, 16(8), e0256091. doi: 10.1371/journal.pone.0256091
Carthy, T. R., Keane, O. M., Hanrahan, J. P., Matthews, D., McEwan, J., Rowe, S., & Mee, J. (2022). Investigation of Intestinal Atresia in a Jersey Sire Family. In: Proceeding of 12th World Congress on Genetics Applied to Livestock Production 3-8 July. Netherlands, Pp. 11-14.
Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protocols, 4(1), 44-57. doi: 10.1038/nprot.2008.211
Javan Nikkhah, M. (2019). Identification of selective signatures associated with resistance to bovine leukosis (BLV) in Iranian Holstein cows. Ph.D. Thesis, University of Tehran, Iran. [In Persian]
Jin, Q., Wang, C., Li, X., Yu, M., Zhao, S. H., & Li, X. (2013). Molecular characterization and genome-wide mutations in porcine anal atresia candidate gene GLI2. Mammalian Genome, 24, 500-507. doi: 10.1007/s00335-013-9485-8
Jahuey‐Martínez, F. J., Parra‐Bracamonte, G. M., Sifuentes‐Rincón, A. M., & Moreno‐Medina, V. R. (2019). Signatures of selection in Charolais beef cattle identified by genome‐wide analysis. Journal of Animal Breeding and Genetics, 136(5), 378-389. doi: 10.1111/jbg.12399
Keane, O. M., Carthy, T. R., Hanrahan, J. P., Matthews, D., McEwan, J. C., & Rowe, S. J. (2023). Risk factors for, and genetic association with, intestinal atresia in dairy calves. Animal Genetics, 4, 104-112. doi: 10.1111/age.13291
Kim, H., Song, K. D., Kim, H. J., Park, W., Kim, J., & Lee, T. (2015). Exploring the genetic signature of body size in Yucatan Miniature pig. PLoS One, 10(4), e0121732. doi: 10.1371/journal.pone.0121732
Lejeune, B., Miclard, J., Stoffel, M. H., & Meylan, M. (2011). Intestinal atresia and ectopia in a bovine fetus. Veterinary Pathology, 48, 830-833. doi: 10.1177/0300985810383872
Li, S., Wang, X., Qu, L., Dou, T., & Wang, K. (2018). Genome-wide association studies for small intestine length in an F2 population of chickens. Italian Journal of Animal Science, 17(2), 294-300. doi: 10.1080/1828051X.2017.1368419
Lin, S., Wan, Z., Zhang, J., Xu, L., Han, B., & Sun, D. (2020). Genome-wide association studies for the concentration of albumin in colostrum and serum in Chinese Holstein. Animals, 10(12), 2211.‏ doi: 10.3390/ani10122211
Loureiro, B., Block, J., Favoreto, M. G., Carambula, S., Pennington, K. A., Ealy, A. D., & Hansen, P. J. (2011a). Consequences of conceptus exposure to colony-stimulating factor 2 on survival, elongation, interferon-τ secretion, and gene expression. Reproduction, 41(5), 617-624. doi: 10.1530/REP-10-0511
Loureiro, B., Oliveira, L. J., Favoreto, M. G., & Hansen, P. J. (2011b). Colony-stimulating factor 2 inhibits induction of apoptosis in the bovine preimplantation embryo. American Journal of Reproduction Immunology, 65, 578-588. doi: 10.1111/j.1600-0897.2010.00953.x
Mokhber, M., Moradi-Shahrbabak, M., Sadeghi, M., Moradi-Shahrbabak, H., Stella, A., Nicolazzi, E., Rahmaninia, J., & Williams, J. L. (2018). A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics, 19(1), 449. doi: 10.1186/s12864-018-4759-x
Mohammadi, H., Rafat, S. A., Moradi Shahrbabak, H., Shodja, J., & Moradi, M. H. (2020). Genome-wide association study and gene ontology for growth and wool characteristics in Zandi sheep. Journal of Livestock Science and Technologies, 8(2), 45-55. doi: 10.22103/JLST.2020.15795.1317
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559-575. doi: 10.1086/519795
Pum, A., Ennemoser, M., Gerlza, T., & Kung, A. J. (2022). The role of heparan sulfate in CCL26-induced eosinophil chemotaxis. International Journal of Molecular Science, 23(12), 6519. doi: 10.3390/ijms23126519
Quick, A. E., Ollivett, T. L., Kirkpatrick, B. W., & Weigel, K. A. (2020). Genomic analysis of bovine respiratory disease and lung consolidation in preweaned Holstein calves using clinical scoring and lung ultrasound. Journal of Dairy Science, 103(2), 1632-1641. doi: 10.3168/jds.2019-16531
Robbins, C. M., Tembe, W. A., Baker, A., Sinari, S., Moses, T. Y., Beckstrom-Sternberg, S., Beckstrom-Sternberg, J., Barrett, M., & Carpten, J. D. (2011). Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Research, 21(1), 47-55. doi: 10.1101/gr.107961.110
Rostamzadeh Mahdabi, E., Esmailizadeh, A., Ayatollahi Mehrgardi, A., & Asadi Fozi, M. (2021). A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genetic Selection Evolution, 53(1), 72. doi: 10.1186/s12711-022-00720-y
Sanchez, M. P., Guatteo, R., Davergne, A., Saout, J., Grohs, C., Deloche, M. C., Taussat, S., Fourichon, C., & Boichard, D. (2020). Identification of the ABCC4, IER3, and CBFA2T2 candidate genes for resistance to paratuberculosis from sequence-based GWAS in Holstein and Normande dairy cattle. Genetic Selection Evolution, 52(1), 14. doi: 10.1186/s12711-020-00535-9
Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., & Singh, R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. doi: 10.1016/j.ygeno.2021.02.009
Vardi, I., Barel, O., Sperber, M., Schvimer, M., Nunberg, M., Field, M. Ouahed, J., Marek-Yagel, D., Weiss, B., & Shouval, D. S. (2018). Genetic and structural analysis of a SKIV2L mutation causing tricho-hepato-enteric syndrome. Digestive Diseases and Sciences, 63(5), 1192-1199. doi: 10.1007/s10620-018-4983-x
Weir, B. S., & Cockerham, C. C. (1984). Estimating F‐statistics for the analysis of population structure. Evolution, 38(6), 1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x
Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 1, 395-420. doi: 10.1111/j.1558-5646.1965.tb01731.x
Yurchenko, A. A., Daetwyler, H. D., Yudin, N., Schnabel, R. D., Vander Jagt, C. J., Soloshenko, V., Lhasaranov, B., Popov, R., Taylor, J. F., & Larkin, D. M. (2018). Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Scientific Reports, 8(1), 12984. doi: 10.1038/s41598-018-31304-w
Zhao, F., McParland, S., Kearney, F., Du, L., & Berry, D. P. (2015). Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genetics Selection Evolution, 47(1), 49. doi: 10.1186/s12711-015-0127-3