Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell's functional organization. Nature Reviews Genetics, 5(2), 101-113. doi: 10.1038/nrg1272
Bouwman, A., Bovenhuis, H., Visker, M., & van Arendonk, J. (2014). Fine mapping of a quantitative trait locus for bovine milk fat composition on Bos taurus autosome 19. Journal of Dairy Science, 97(2), 1139-1149. doi: 10.3168/jds.2013-7197
Carvajal, A., Huircán, P., & Manríquez, J. (2016). Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genetics and Molecular Research, 15(2). doi: 10.4238/gmr.15027057
Čítek, J., Řehout, V., Hanušová, L., & Přibyl, J. (2020). Gene polymorphisms influencing yield, composition and technological properties of milk from Czech Simmental and Holstein cows. Animal Bioscience, 34(1), 2-11. doi: 10.5713/ajas.19.0520
Cruz, V., López, B., & Gutiérrez, J. (2019). Genome-wide association study for milk fatty acids in Holstein cattle accounting for the DGAT1 gene effect. Animals, 9(11), 997. doi: 10.3390/ani9110997
Ferlic, J., & Horvath, S. (2016). WGCNA: Weighted Gene Co-Expression Network Analysis. Semantic Scholar. Available at: https://www.semanticscholar.org/paper/0f363871f09343763bbddb28967f1998569a0be4
Ghaderi-Zefrehei, M., Arjmand, F., Samadian, F., & Meamar, M. (2018). Extracting transcriptomic biomarker network in Staphylococcus aureus driven dairy cow’s mastitis using human genome. Animal Production Research, 6(4), 1-12. doi: 10.22124/ar.2018.2751 [In Persian]
Ghavi Hossein-Zadeh, N. (2021). A meta-analysis of heritability estimates for milk fatty acids and their genetic relationship with milk production traits in dairy cows using a random-effects model. Livestock Science, 244, 104388. doi: 10.1016/j.livsci.2020.104388
Ghavi Hossein-Zadeh, N. (2024). An overview of recent technological developments in bovine genomics. Veterinary and Animal Science, 25, 100382. doi: 10.1016/j.vas.2024.100382
Guo, X., Li, Y., & Zhang, Y. (2023). Identification of key modules and hub genes involved in regulating the color of chicken breast meat using WGCNA. Animals, 13(14), 2356. doi: 10.3390/ani13142356
Han, J. D., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V., Dupuy, D., Walhout, A. J., Cusick, M. E., Roth, F. P., & Vidal, M. (2004). Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature, 430(6996), 88-93. doi: 10.1038/nature02555
He, X., Li, Y., & Zhang, Y. (2024). Explorations on key module and hub genes affecting IMP content of chicken pectoralis major muscle based on WGCNA. Animals, 14(3), 402. doi: 10.3390/ani14030402
Ideker, T., & Krogan, N. (2012). Differential network biology. Molecular Systems Biology, 8(1), 565. doi: 10.1038/msb.2011.99
Kharrati Koopaei, H., & Mehrabani-Yeganeh, H. (2012). Effect of DGAT1 variants on milk composition traits in Iranian Holstein cattle population. Semantic Scholar. Available at: https://www.semanticscholar.org/paper/ce4114b3329f1588a3f006b0c6bc3a5748170e0c
Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 1-18. doi: 10.1186/1471-2105-9-559
Li, C., Sun, D., Zhang, S., & Liu, L. (2014). Genome-wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS One, 9(9), e96186. doi: 10.1371/journal.pone.0096186
Li, F., Li, C., & Chen, Y. (2020). DGAT1 K232A polymorphism is associated with milk production traits in Chinese cattle. Animal Biotechnology, 32(4), 427-431. doi: 10.1080/10495398.2020.1711769
Liu, L., Li, C., & Sun, D. (2020). GWAS-based identification of new loci for milk yield, fat, and protein in Holstein cattle. Animals, 10(11), 2048. doi: 10.3390/ani10112048
Marchitelli, C., & Crisà, A. (2013). Milk fatty acid variability: Effect of some candidate genes involved in lipid synthesis. Journal of Dairy Research, 80(2), 165-173. doi: 10.1017/S002202991300006X
Miao, L., Zhang, Y., & Li, Y. (2018). Weighted gene co-expression network analysis identifies specific modules and hub genes related to hyperlipidemia. Cellular Physiology and Biochemistry, 48(3), 1151-1163. doi: 10.1159/000491982
Mou, M., Li, Y., & Zhang, Y. (2024). Detection of polymorphisms in FASN, DGAT1, and PPARGC1A genes and their association with milk yield and composition traits in river buffalo of Bangladesh. Animals, 14(13), 1945. doi: 10.3390/ani14131945
Palombo, V., & Crisà, A. (2018). Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. Journal of Dairy Science, 101(12), 11004-11019. doi: 10.3168/jds.2018-14413
Roy, R., & Khatkar, M. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Animal Genetics, 37(3), 215-218. doi: 10.1111/j.1365-2052.2006.01434.x
Sari, E., & Todorovska, E. (2019). Weighted gene co-expression network analysis unveils gene networks associated with the Fusarium head blight resistance in tetraploid wheat. BMC Genomics, 20(1). doi: 10.1186/s12864-019-6161-8
Sun, D., Li, C., & Zhang, S. (2009). Effects of DGAT1 and GHR on milk yield and milk composition in the Chinese dairy population. Animal Genetics, 40(6), 997-1000. doi: 10.1111/j.1365-2052.2009.01945.x
Szyda, J., & Komisarek, J. (2007). Statistical modeling of candidate gene effects on milk production traits in dairy cattle. Journal of Dairy Science, 90(6), 2971-2979. doi: 10.3168/jds.2006-724
Thaller, G., & Kühn, C. (2003). Effects of DGAT1 variants on milk production traits in German cattle breeds. Journal of Animal Science, 81(8), 1911-1918. doi: 10.2527/2003.8181911x
Winter, A., & Krämer, W. (2002). Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences, 99(14), 9300-9305. doi: 10.1073/pnas.142293799
Zhao, X., Li, Y., & Zhang, Y. (2020). Weighted gene co-expression network analysis reveals potential candidate genes affecting drip loss in pork.
Animal Genetics,
51(4).
doi: 10.1111/age.13006