اثر اکسترود کردن کنجاله سویا و کلزا و کاهش سطح پروتئین خام جیره بر فراسنجه های خونی و جمعیت میکروبی شکمبه گوساله های پرواری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تغذیه دام، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

2 دانشیار، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

3 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

چکیده

هدف از این مطالعه، بررسی اثر کاهش سطح پروتئین خام جیره و افزودن کنجاله­های سویا و کلزای اکسترود شده بر فراسنجه­های خونی و شکمبه­ای، جمعیت متانوژن­ها و با­کتری­های با تولید آمونیاک زیاد (HAB) شکمبه گوساله­های پرواری بود. بدین منظور، 36 رأس گوساله نر پرواری در قالب طرح کاملاً تصادفی با شش تیمار و شش تکرار استفاده شد. تیمارهای آزمایشی شامل 1) شاهد (کنجاله سویا) (15=CP درصد)، 2) کنجاله سویا (13=CP درصد، 13SBM)، 3) کنجاله سویای اکسترود (13=CP درصد، EXSBM)، 4) کنجاله کلزا (13=CP درصد، 13CM)، 5) کنجاله کلزای اکسترود (13=CP درصد، EXCM)، و 6) پودر ماهی (13=CP درصد، FM) بودند. غلظت آلبومین، پروتئین تام، کراتینین و نیتروژن اوره­ای خون در تیمارهای آزمایشی نسبت به گروه شاهد، کاهش یافت (05/0>P). بالاترین میزان آمونیاک و استات شکمبه و کمترین میزان پروپیونات و اسیدهای چرب فرار در گروه شاهد مشاهده شد (05/0>P). کمترین جمعیت HAB شکمبه در تیمارهای تغذیه شده با کنجاله سویا و کلزای اکسترود شده و سپس در دیگر تیمارهای با پروتئین پائین بود و در تیمار شاهد بیشترین بود (05/0>P). همچنین تیمارهای دریافت کننده کنجاله سویا و کلزای اکسترود شده دارای جمعیت کمتری از متانوژن­ها نسبت به گروه شاهد بودند (05/0>P). با توجه به نتایج به­دست آمده، کاهش سطح CP جیره و عمل اکسترود کردن کنجاله سویا و کلزا سبب کاهش جمعیت HAB و آمونیاک شکمبه و اوره خون شد. در ضمن، اکسترود کردن، جمعیت متانوژن­ها و نسبت استات به پروپیونات را کاهش و موجب افزایش غلظت تام اسیدهای چرب فرار به­ عنوان شاخصی از بهبود راندمان تخمیر شکمبه، شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of soybean meal and canola meal extrusion and reducing the dietary level of crude protein on blood parameters and rumen microbial populations of feedlot calves

نویسندگان [English]

  • A. Hadipour 1
  • A. Mohit 2
  • H. Darmani Kuhi 2
  • F. Hashemzadeh 3
1 Ph.D. Student of Animal Nutrition, Department of Animal Science, Faculty of Agriculture Sciences, University of Guilan, Rasht, Iran
2 Associate Professor, Department of Animal Science, Faculty of Agriculture Sciences, University of Guilan, Rasht, Iran
3 Assistant Professor, Department of Animal Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

This study aimed to investigate the effect of reducing the dietary level of crude protein (CP) and inclusion of extruded soybean meal (SBM) and canola meal (CM) on blood and ruminal parameters, the population of methanogens, and hyper-ammonia producing bacteria (HAB) of feedlot calves. To this purpose, 36 male calves were used in a completely randomized experimental design with six treatments and six replicates. Experimental treatments included: 1) Control (CP=15%, SBM (15SBM)), 2) SBM (CP=13%, 13SBM), 3) Extruded SBM (CP=13%, EXSBM), 4) CM (CP=13%, 13CM), 5) Extruded CM (CP=13%, EXCM), and 6) Fish meal (CP=13%, FM). Concentrations of albumin, total protein, creatinine, and blood urea nitrogen in experimental treatments decreased compared to 15SBM (P>0.05). The highest values of ruminal ammonia and acetate and the lowest amounts of propionate and volatile fatty acids (VFA) were observed in the 15SBM (P<0.05). The minimum ruminal HAB population was observed in EXSBM and EXCM and then in 13SBM, 13CM and FM and was maximum in 15SBM (P<0.05). Also, treatments fed EXSBM and EXCM had a smaller methanogens population than the control group (P<0.05). Based on the results obtained, decreasing dietary CP level and processing of extrusion for SBM and CM decreased HAB population, rumen ammonium, and blood urea concentration. Furthermore, extrusion declined methanogens bacteria population and acetate to propionate ratio and increased total VFA concentrations which can be considered as an indication of the rumen improvement in fermentation efficiency index.

کلیدواژه‌ها [English]

  • Extrusion
  • Ammonia
  • Protein
  • Feedlot calves
  • Methane
Ahmed M., Liang H., Chisomo Kasiya H., Ji K., Ge X., Ren M., Liu B., Zhu X. and Sun A. 2019. Complete replacement of fish meal by plant protein ingredients with dietary essential amino acids supplementation for juvenile blunt snout bream (Megalobrama amblycephala). Aquaculture Nutrition, 25(1): 205-214.
Ariyibi S. 2018. High inclusion levels of canola meal in broiler chicken nutrition. Graduate Thesis, University of Manitoba, USA.
Arriola Apelo S. I., Knapp J. R. and Hanigan M. D. 2014. Invited review: Current representation and future trends of predicting amino acid utilization in the lactating dairy cow. Journal of Dairy Science, 97(7): 4000-4017.
Attwood G. T., Klieve A. V., Ouwerkerk D. and Patel B. K. 1998. Ammonia-hyperproducing bacteria from New Zealand ruminants. Applied and Environmental Microbiology, 64(5): 1796-1804.
Bahrami-Yekdangi H., Khorvash M., Ghorbani G. R., Alikhani M., Jahanian R. and Kamalian E. 2014. Effects of decreasing metabolizable protein and rumen-undegradable protein on milk production and composition and blood metabolites of Holstein dairy cows in early lactation. Journal of Dairy Science, 97(6): 3707-3714.
Bannink A., France J., Lopez S., Gerrits W., Kebreab E., Tamminga S. and Dijkstra J. 2008. Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology, 143(1-4): 3-26.
Beauchemin K., Kreuzer M., O’mara F. and McAllister T. 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, 48(2): 21-27.
Belanche A., Doreau M., Edwards J. E., Moorby J. M., Pinloche E. and Newbold C. J. 2012. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. The Journal of Nutrition, 142(9): 1684-1692.
Benchaar C. and Moncoulon R. 1993. Effect of extrusion at 195 degrees C on in situ ruminal and intestinal disappearance of the cow amino acids in lupin seeds. Annales de Zootechnie, 42(2): 128-129.
Bento C. B. P., de Azevedo A. C., Detmann E. and Mantovani H. C. 2015. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein. BMC Microbiology, 15(1): 28.
Biswas A., Araki H., Sakata T., Nakamori T. and Takii K. 2019. Optimum fish meal replacement by soy protein concentrate from soymilk and phytase supplementation in diet of red sea bream, Pagrus major. Aquaculture, 506: 51-59.
Broderick G. A. and Kang J. H. 1980. Automated simultaneous determination of ammonia and total amino-acids in ruminal fluid and invitro media. Journal of Dairy Science, 63(1): 64-75.
Chiavegato M., Powers W. and Palumbo N. 2015. Ammonia and greenhouse gas emissions from housed Holstein steers fed different levels of diet crude protein. Journal of Animal Science, 93(1): 395-404.
Cunha C. S., Veloso C. M., Marcondes M. I., Mantovani H. C., Tomich T. R., Pereira L. G. R., Ferreira M. F., Dill-McFarland K. A. and Suen G. 2017. Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate. Systematic and Applied Microbiology, 40(8): 492-499.
de Coca-Sinova A., Valencia D., Jiménez-Moreno E., Lázaro R. and Mateos G. 2008. Apparent ileal digestibility of energy, nitrogen, and amino acids of soybean meals of different origin in broilers. Poultry Science, 87(12): 2613-2623.
DeRamus H. A., Clement T. C., Giampola D. D. and Dickison P. C. 2003. Methane emissions of beef cattle on forages: efficiency of grazing management systems. Journal of Environmental Quality, 32(1): 269-277.
Dijkstra J., Oenema O. and Bannink A. 2011. Dietary strategies to reducing N excretion from cattle: implications for methane emissions. Current Opinion in Environmental Sustainability, 3(5): 414-422.
Doreau M., Delacroix A., Jouany J., Durier C. and Rémond B. 1990. The influence of physiological state and dietary nitrogen supply on digestion in the dairy cow. Journal of Animal Science, 68(11): 3853-3860.
Doreau M., Ferlay A., Rochette Y. and Martin C. 2014. Effects of dehydrated lucerne and soya bean meal on milk production and composition, nutrient digestion, and methane and nitrogen losses in dairy cows receiving two different forages. Animal, 8(3): 420-430.
Ellis J., Dijkstra J., Kebreab E., Bannink A., Odongo N., McBride B. and France J. 2008. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. The Journal of Agricultural Science, 146(2): 213-233.
Fontaine J., Hörr J. and Schirmer B. 2001. Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products, and poultry meal. Journal of Agricultural and Food Chemistry, 49(1): 57-66.
Ghorbani B., Ghoorchi T., Amanlou H. and Zerehdaran S. 2010. Effects of using monensin and different levels of crude protein on milk production, blood metabolites and digestion of dairy cows. Asian-Australasian Journal of Animal Sciences, 24(1): 65-72.
Guadagnin M., Tagliapietra F., Cattani M., Schiavon S., Worgan H., Belanche A., Newbold C. and Bailoni L. 2013. Rumen fermentation and microbial yield of high-or low-protein diets containing ground soybean seeds or homemade rapeseed expellers evaluated with RUSITEC. Canadian Journal of Animal Science, 93(3): 363-371.
Guan L. L., Nkrumah J. D., Basarab J. A. and Moore S. S. 2008. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiology Letters, 288(1): 85-91.
Hackmann T. J. and Firkins J. L. 2015. Maximizing efficiency of rumen microbial protein production. Frontiers in Microbiology, 6: 465.
Hart K., Yáñez-Ruiz D. R., Duval S., McEwan N. and Newbold C. 2008. Plant extracts to manipulate rumen fermentation. Animal Feed Science and Technology, 147(1-3): 8-35.
Hartinger T., Gresner N. and Südekum K.-H. 2018. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. Journal of Animal Science and Biotechnology, 9(1): 33.
Hashemzadeh-Cigari F., Ghorbani G. R., Khorvash M., Riasi A., Taghizadeh A. and Zebeli Q. 2015. Supplementation of herbal plants differently modulated metabolic profile, insulin sensitivity, and oxidative stress in transition dairy cows fed various extruded oil seeds. Preventive Veterinary Medicine, 118(1): 45-55.
He Y., Yu Z., Qiu Q., Shao T., Niu W., Xia C., Wang H., Su H. and Cao B. 2018. Effects of dietary protein levels and calcium salts of long-chain fatty acids on nitrogen mobilization, rumen microbiota and plasma fatty acid composition in Holstein bulls. Animal Feed Science and Technology, 246: 1-10.
Hegarty R. and Gerdes R. 1999. Hydrogen production and transfer in the rumen. Recent Advances in Animal Nutrition in Australia, 12: 37-44.
Hristov A., Heyler K., Schurman E., Griswold K., Topper P., Hile M., Ishler V., Fabian-Wheeler E. and Dinh S. 2015. CASE STUDY: Reducing dietary protein decreased the ammonia emitting potential of manure from commercial dairy farms. The Professional Animal Scientist, 31(1): 68-79.
Hünerberg M., McGinn S., Beauchemin K., Okine E., Harstad O. and McAllister T. 2013a. Effect of dried distillers grains plus solubles on enteric methane emissions and nitrogen excretion from growing beef cattle. Journal of Animal Science, 91(6): 2846-2857.
Hünerberg M., McGinn S., Beauchemin K. A., Okine E., Harstad O. M. and McAllister T. A. 2013b. Effect of dried distillers’ grains with solubles on enteric methane emissions and nitrogen excretion from finishing beef cattle. Canadian Journal of Animal Science, 93(3): 373-385.
Hünerberg M., McGinn S. M., Beauchemin K. A., Entz T., Okine E. K., Harstad O. M. and McAllister T. A. 2015. Impact of ruminal pH on enteric methane emissions. Journal of Animal Science, 93(4): 1760-1766.
Janssen P. H. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology, 160(1-2): 1-22.
Kargar S., Ghorbani G. R., Alikhani M., Khorvash M., Rashidi L. and Schingoethe D. J. 2012. Lactational performance and milk fatty acid profile of Holstein cows in response to dietary fat supplements and forage:concentrate ratio. Livestock Science, 150(1-3): 274-283.
Knapp J., Laur G., Vadas P., Weiss W. and Tricarico J. 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6): 3231-3261.
Law R. A., Young F. J., Patterson D. C., Kilpatrick D. J., Wylie A. R. G. and Mayne C. S. 2009. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. Journal of Dairy Science, 92(3): 1001-1012.
Lee Y. H., Ahmadi F., Lee M., Oh Y.-K. and Kwak W. S. 2020. Effect of crude protein content and undegraded intake protein level on productivity, blood metabolites, carcass characteristics, and production economics of Hanwoo steers. Asian-Australasian Journal of Animal Sciences, 33(10): 1599-1609.
Menezes A. C. B., Valadares Filho S. C., Costa e Silva L. F., Pacheco M. V. C., Pereira J. M. V., Rotta P. P., Zanetti D., Detmann E., Silva F. A. S., Godoi L. A. and Rennó L. N. 2016. Does a reduction in dietary crude protein content affect performance, nutrient requirements, nitrogen losses, and methane emissions in finishing Nellore bulls? Agriculture, Ecosystems and Environment, 223: 239-249.
Mohammed R., Zhou M., Koenig K., Beauchemin K. and Guan L. 2011. Evaluation of rumen methanogen diversity in cattle fed diets containing dry corn distillers grains and condensed tannins using PCR-DGGE and qRT-PCR analyses. Animal Feed Science and Technology, 166: 122-131.
Mustafa A., McKinnon J. and Christensen D. 2000. Protection of canola (low glucosinolate rapeseed) meal and seed protein from ruminal degradation. Asian-Australasian Journal of Animal Sciences, 13(4): 535-542.
Niu M., Appuhamy J., Leytem A., Dungan R. and Kebreab E. 2016. Effect of dietary crude protein and forage contents on enteric methane emissions and nitrogen excretion from dairy cows simultaneously. Animal Production Science, 56(3): 312-321.
Nowak W., Michalak S. and Wylegala S. 2005. In situ evaluation of ruminal degradability and intestinal digestibility of extruded soybeans. Czech Journal Animal Science, 50(6): 281-287.
Owens F. N., Secrist D. S., Hill W. J. and Gill D. R. 1998. Acidosis in cattle: A review. Journal of Animal Science, 76(1): 275-286.
Patra A., Park T., Kim M. and Y. Z. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8(1): 13.
Ramirez-Bribiesca J. E., McAllister T., Ungerfeld E. and Ortega-Cerrilla M. E. 2018. In vitro rumen fermentation and effect of protein fractions of canola meals on methane production. Scientia Agricola, 75: 12-17.
Russell J., Strobel H. and Chen G. 1988. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Applied and Environmental Microbiology, 54(4): 872-877.
SAS. 2003. User’s Guide: Statistics Version 9.1. SAS Institute Inc., Cary, NC.
Stern M., Santos K. and Satter L. 1985. Protein degradation in rumen and amino acid absorption in small intestine of lactating dairy cattle fed heat-treated whole soybeans. Journal of Dairy Science, 68(1): 45-56.
Szumacher-Strabel M. and Cieślak A. 2010. Potential of phytofactors to mitigate rumen ammonia and methane production. Journal of Animal and Feed Sciences, 19(3): 319-337.
Tavendale M. H., Meagher L. P., Pacheco D., Walker N., Attwood G. T. and Sivakumaran S. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology, 123: 403-419.
Tothi R., Lund P., Weisbjerg M. R. and Hvelplund T. 2003. Effect of expander processing on fractional rate of maize and barley starch degradation in the rumen of dairy cows estimated using rumen evacuation and in situ techniques. Animal Feed Science and Technology, 104(1-4): 71-94.
Van Nevel C. and Demeyer D. 1996. Control of rumen methanogenesis. Environmental Monitoring and Assessment, 42(1-2): 73-97.
Van Soest P. J. 1994. Nutritional ecology of the ruminant. Cornell university press.
Wallace R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proceedings of the Nutrition Society, 63(4): 621-629.
Wallace R. J., Rooke J. A., McKain N., Duthie C. A., Hyslop J. J., Ross D. W., Waterhouse A., Watson M. and Roehe R. 2015. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics, 16(1): 839.
Wang M., Wang R., Janssen P. H., Zhang X. M., Sun X. Z. Pacheco D. and Tan Z. L. 2016. Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids in the rumen of dairy cows1. Journal of Animal Science, 94(3): 1159-1169.