Modelling energy efficiency in broiler production using multi layer perception artificial neural network approach (Case study: Ardabil province)

Document Type : Research Paper

Authors

1 MS.c Graduated Student, Department of Biosystem Engineering, Faculty of Agricultural Technology and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Associate Professor, Department of Biosystem Engineering, Faculty of Agricultural Technology and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Production systems in bio-Industries rest on resources management and conversion of various forms of energy. This research is investigated and modelled the energy of broiler production in a non-parametric form. The studied samples consist of 70 broiler productions in Ardabil province which were randomly selected from statistical society of the region. In this study, the equivalent energy consumption was estimated in the mentioned industry and the energy indices were calculated, then the equivalent amount of output energy and performance of system were modelled and estimated, using the artificial neural network models. Based on the obtained results, the total equivalent energy of input and output in broiler production were calculated as 153.79 and 27.45 GJ per 1000 birds, respectively. The most consumable input energy in the broiler production of region belongs to the fossil fuel with 61.48% of the total equivalent energy. Based on the results of artificial neural network, the best structure for modelling of energy consumption of broiler production was estimated 5-14-2 structure with five inputs, one hidden layer with 14 neurons and one output layer with two output parameters. The determination coefficient of the best weight combination for estimating the equivalent energy of broiler and manure production for testing data were obtained 93% and 91%, respectively and for validation data were obtained 98% and 95%. In assessing the effectiveness of inputs on the outputs, the fossil fuel showed the highest sensitivity among the production inputs that reveals the needs for revision of the energy resources more than ever.

Keywords


بی‌نام، 1391. چکیده نتایج سرشماری از مرغداری‌های پرورش مرغ گوشتی. سازمان مدیریت و برنامه‌ریزی کشور، مرکز آمار ایران. www.amar.org.ir.
بی‌نام، 1392. آمار و اطلاعات سازمان جهاد کشاورزی استان اردبیل. واحد تولیدات دامی.
حیدری م. د.، امید م. و اکرم الف. 1391. بررسی انرژی مصرفی و اثرات تعداد جوجه و نوع سیستم تهویه بر بازده مصرف انرژی واحدهای مرغ گوشتی استان یزد. مجله فناوری ماشین های کشاورزی، 1(1): 39-33.
دشتی ق.، یاوری س.، پیش‌بهار الف و حیاتی ب. 1390. عوامل مؤثر بر کارایی تکنیکی واحدهای مرغداری گوشتی شهرستان سقز و کلیایی. نشریه پژوهش‌های علوم دامی، 21(3): 95-83.
عمید س. 1393. ارزیابی کارایی مصرف انرژی در واحدهای تولید مرغ گوشتی به کمک روش‌های فازی، مطالعه موردی: استان اردبیل. پایان‌نامه کارشناسی ارشد، دانشگاه محقق اردبیلی.
مصری‌گُندشمین ت. 1388. بهینه‌سازی افت کمباین با استفاده از سیستم‌های هوشمند. رساله دکتری دانشگاه تبریز.
نجفی‌اناری س.، خادم‌الحسینی ن.، جزایری ک.،‌ میرزاده خ. 1387. بررسی کارایی انرژی در پرورش گوشت مرغی منطقه اهواز. پنجمین کنگره ملی مهندسی ماشین‌های کشاورزی و مکانیزاسیون، 6 و 7 شهریور، مشهد، ایران.
نقیب‌زاده ش.، جوادی الف.، رحمتی م. و مهران‌زاده م. 1389. بررسی چگونگی سیر مصرف انرژی برای پرورش مرغ گوشتی در منطقه شمال خوزستان. ششمین کنگره ملی مهندسی ماشین‌های کشاورزی و مکانیزاسیون، 24 و 25 شهریور، کرج، ایران.
Alrwis K. N. and Francis E. 2003. Technical efficiency of broiler farms in the central region of Saudi Arabia. Research Bulletin, 116: 5–34.
Amid S., Mesri-Gundoshmian T., Rafiee S. and Shahgoli G. H. 2015. Energy and economic analysis of broiler production under different farm sizes. Elixir Agriculture, 78: 29688-29693.
Atilgan A. and Koknaroglu H. 2006. Cultural energy analysis on broilers reared in different capacity poultry houses. Italian Journal of Animal Science, 5: 393–400.
Bekhet A. H. and Abdullah A. 2010. Energy use in agriculture sector: Input-Output analysis. International Business Research, 3(3): 111–121.
Chauhan N. S., Mohapatra P. K. J. and Pandey K. P. 2006. Improving energy productivity in paddy production through benchmarking: an application of data envelopment analysis. Energy Conversion and Management, 47: 1063–1085.
Esengun K, Erdal G., Gunduz O. and Erdal H. 2007. An economic analysis and energy use in stake-tomato production in Tokat province of Turkey. Renewable Energy, 32: 1873–1881.
Erdal G., Esengun K., Erdal H. and Gunduz O. 2007. Energy use and economic analysis of sugar beet production in Tokat province of Turkey. Energy, 32: 35–41.
Grzesiak W., Błaszczyk P. and Lacroix R. 2006. Methods of predicting milk yield in dairy cows. Predictive capabilities of Wood’s lactation curve and artificial neural networks (ANNs). Computers and Electronics in Agriculture, 54: 69–83.
Hatirli S. A., Ozkan B. and Fert C. 2005. An econometric analysis of energy input-output in Turkish agriculture. Renewable and Sustainable Energy Reviews, 9: 608–623.
Hatirli S. A., Ozkan B. and Fert C. 2006. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31: 427–438.
Heidari M. D., Omid M. and Akram A. 2011a. Energy efficiency and econometric analysis of broiler production farms. Energy, 36: 6536–6541.
Heidari M. D., Omid M. and Akram A. 2011b. Application of artificial neural network for modeling benefit to cost ratio of broiler farms in tropical regions of Iran. Research Journal of Applied Science, Engineering and Technology, 3(6): 546–552.
Kitani O. 1999. Energy and biomass engineering. In: CIGR handbook of agricultural engineering, vol. V. St. Joseph, MI: ASAE publication. pp. 330.
Kittle A. P. 1993. Alternate daily cover materials and subtitle, the selection technique Rusmar, Incorporated West Chester, PA. pp. 26.
Mandal K. G., Saha K. P., Ghosh P. K., Hati K. M. and Bandyopadhy K.K. 2002. Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass and Bioenergy, 23(5): 337–345.
Mesri-Gundoshmian T., Ghassemzadeh H. R., Abdollahpour S. and Navid H. 2010. Application of artificial neural network in prediction of the combine harvester performance. Food, Agriculture and Environment, 8(2): 721–724.
Nabavi-Pelesaraei A., Fallah A. and Hematian A. 2013. Relation between energy inputs and yield of broiler production in Guilan province of Iran. In: The Second International Conference on Agriculture and Natural Resources, 25-26 Dec. Kermanshah, Iran, pp. 109-117.
Ozkan B., Akcaoz H. and Fert C. 2004. Energy input-output analysis in Turkish agriculture. Renewable Energy, 29: 39–51.
Ozkan B., Akcaoz H. and Karadeniz F. 2004. Energy requirement and economic analysis of citrus production in Turkey. Energy Conversion and Management, 45: 1821-1830.
Pahlavan R., Omid M. and Akram A. 2012. Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy, 37: 171–176.
Pishgar-Komleh S. H., Keyhani A., Rafiee S. and Sefeedpari P. 2011. Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy, 36: 3335–3341.
Rafiee S., Mousavi-Avval H. and Mohammadi A. 2010. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy, 35: 3301–3306.
Rajabi-Hamedani S., Shabani Z. and Rafiee S. 2011. Energy inputs and crop yield relationship in potato production in Hamadan province of Iran. Energy, 36: 2367-2371.
Safa M. and Samarasinghe S. 2011. Determination and modelling of energy consumption in wheat production using neural networks: A case study in Canterbury province, Newzealand. Energy, 36: 5140–5147.
Saniz R. D. 2003. Livestock-environment initiative fossil fuels component: Framework for calculating fossil fuel use in livestock systems. Available from: www.fao.org.
Sefeedpari P. 2012. Assessment and optimization of energy consumption in dairy farm: Energy efficiency. Iranica Journal of Energy and Environment, 3(3): 213–224.
Sefeedpari P., Rafiee S. and Akram A. 2012. Modeling of energy output in poultry for egg production farms using Artificial Neural networks. Journal of Animal Production Advances, 2(5): 247–253.
Sung A. H. 1998. Ranking importance of input parameters of neural networks. Expert Systems with Applications, 15: 405-411.
Zangeneh M., Omid M. and Akram A. 2010. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy, 35: 2927-2933.
Zhao Z., Chow T. L., Rees H. W., Yang Q., Xing Z. and Meng F. R. 2009. Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture, 65(1): 36–48.