Determination and comparison of chemical composition, degradability and gas production parameters of commercial and native barley grain cultivars

Document Type : Research Paper

Authors

1 MSc student, Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Ganbad Kavoos, Iran

2 Assistant Professor, Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Ganbad Kavoos, Iran

Abstract

To evaluate the chemical composition, degradability parameters and gas production parameters of barley grain, four latest-introduced linebred cultivars including Khoram, Mahur, Yusef and Sahra as well as a native one were used. Gas production parameters were determined by gas production technique, and dry matter degradability parameters by nylon bags. Gas production parameters were measured by four replicates at 2 until 96 h after incubation, and degradability parameters were measured by four replicates per fistulated sheep. There were significant differences in terms of dry matter, crude protein and crude fat contents between linebred and native barley grains (P<0.05). Furthermore, significant differences were observed among linebred grains in terms of crude protein and fat (P<0.05). There were no significant differences in gas production parameters among groups except of Yusef cultivar, where the lowest and highest potentials were in native and Yusef cultivar (300.1 vs. 281.7 ml/kg DM, respectively). The native cultivar has the highest metabolizable energy (8.71 MJ/kg), net lactation energy (5.24 MJ/kg), organic matter digestibility (57.67%) and short chain fatty acid (1.07 mmol) as compared to linebred cultivars. Degradability parameters showed the highest and lowest potential in Yusef and native cultivars (88.86 vs. 81.44 percent/h). Generally, results indicated that there were some differences among examined barley grain cultivars in terms of chemical composition and some degradability and gas production parameters.

Keywords


امیرتیموری ا.، خضری ا. و طهماسبی ر. 1392. تعیین تجزیه‌پذیری پروتئین در شوینده خنثی علوفه‌های خشک یونجه و روناس به روس کیسه‌های نایلونی. مجموعه مقالات همایش ملی دام و طیور شمال کشور، ساری، صفحه 2698-2695.
تقی‌زاده ا.، نیکخواه ع. و فضائلی ح. 1375. تعیین قابلیت هضم و خصوصیات تجزیه پذیری بعضی از مواد خوراکی به روش حیوان زنده، آزمایشگاهی و کیسه‌های نایلونی. مجموعه مقالات اولین سمینار پژوهشی گوسفند و بز کشور. موسسه تحقیقات علوم دامی.
سمیعی زفرقندی م.، قورچی ت. و آهنی آذری م. 1389. تعیین اثرات فراوری شیمیایی دو رقم جو بر ناپدید شدن شکمبه‌ای ماده خشک، نشاسته و بخش های کربوهیدرات سیستم کربوهیدرات و پروتئین خالص کرنل (CNCPS). مجله علوم دامی، 41: 32-21.
مرادی م. و قورچی ت. 1391. تعیین تجزیه‌پذیری شکمبه‌ای ماده خشک جو. پنجمین کنگره علوم دامی ایران، دانشگاه صنعتی اصفهان، صفحه 923-921.
منصوری ه، نیکخواه ع، رضائیان م، مرادی م.، و میرهادی س. آ. 1382. تعیین میزان تجزیه‌پذیری علوفه با استفاده از فن تولید گاز و کیسه نایلونی. علوم کشاورزی ایران، 34: 507-495.
Abdi Ghezeljeh E., DaneshMesgaran M., Nasiri Moghaddam H., Fazaeli H. and Vakili A. R. 2010. Impact of climate on chemical composition and in vitro organic matter digestibility of semi-arid barley rain varieties determined by gas production technique. Journal of Animal Science, 88 (E – Suppl.): 717.
Anker-Nilssen K., Færgestad E. M., Sahlstrøm S. and Uhlen A. K. 2006. Interaction between barley cultivars and growth temperature on starch degradation properties measured in vitro. Animal Feed Science and Technology, 130: 3–22.
AOAC. 2000. Official methods of analysis. 17th ed. Association of Official Analytical Chemists. Washington DC, USA.
Beauchemin K. A., Farr B. I., Rode L. M. and Schaalje G. B. 1994. Effects of alfalfa silage chop length and supplementary long hay on chewing and milk production of dairy cows. Journal of Dairy Science, 77: 1326–1339.
Beauchemin K. A., McAllister T. A., Dong Y., Farr B. I. and Cheng K. J. 1993. Effects of mastication on digestion of whole cereal grains by cattle. Journal of Animal Science, 72: 236–246.
Beuvink J. M. W., Spoelstra S. F. and Hogendorp R. J. 1992. An automated method for measuring timecourse of gas production of feedstuff incubated with buffered rumen fluid. Netherland Journal of Agricultural Science, 40: 401–407.
Blummel M. and Ørskov E. R. 1993. Composition of in vitro gas production and nylon bag degradability of roughages in predicting food intake in cattle. Animal Feed Science and Technology, 40: 109 –119.
Bowman J. G. P., Blake T. K. Surber L. M. M., Habernicht D. K. and Bockelman H. 2001. Feed-quality variation in barley core collection of the USDA National small grains collection. Crop Science, 41: 863-869.
Bradshaw W. L., Hinman D. D., Bull R. C. and Everson D. O. 1992. Steptoe vs Klages barley varieties and processing methods on feedlot steer nutrient digestibility, carcass characteristics, and performance. Western Section American Society of Animal Science, 43: 548-550.
Cattivilli L., Delogu G., Terzi V. and Stanca M. 1994. Progress in barley breeding. PP. 95-181. In: G.A. Slafer (ed). Genetic Improvements of Field Crops. Marcel Decker, Inc. NY, USA.
Church D. C. 1991. Livestock feeds and feeding. 3rd ed. Prentice Hall, Englewood Cliffs, NJ, USA, p. 546.
Deghi A. A. and Shawrang P. 2006. Effects of microwave irradiation on ruminal protein and starch degradation of corn grain. Animal Feed Science and Technology, 127: 113–123.
Getachew G., Makkar H. P. S. and Becker K. 1998. The in vitro gas coupled with ammonia measurement for evaluation of nitrogen degradability in low quality roughages using incubation medium of different buffering capacity. Journal of the Science of Food and Agriculture, 77: 87- 95.
Getachew G., Makkar H. P. S. and Becker K. 2002. Tropical browses: content of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acids and in vitro gas production. The Journal of Agricultural Science, 139: 341-352.
Ghorbani G. R. and Hadj-Hussaini A. 2002. In situ degradability of Iranian barley grain cultivars. Small Ruminant Research, 44: 207-212.
Griffey C., Brooks W., Kurantz M., Thomason W., Taylor F., Obert D., Moreau R., Flores R., Sohn M. and Hicks K. 2009. Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production. Journal of Cereal Science, 1–9.
Herrera-Saldana R. E., Huber J. T. and Poore M. H. 1990. Dry matter, crude protein and starch degradability of five cereal grains. Journal of Dairy Science, 73: 2386–2393.
Holopainen U. R., Wilhelmson A., Salmenkallio-Marttila M., Peltonen-Sainio P., Rajala A., Reinikainen P., Kotaviita E., Simolin H. and Home S. 2005. Endosperm structure affects the malting quality of barley (Hordeum vulgare L.). Journal of Agriculture and Food Chemistry, 53: 7279-7287.
Hristov A. N. and McAllister T. A. 2002. Disappearance in situ Effect of inoculants on whole-crop barley silage fermentation and dry matter. Journal of Animal Science, 80: 510-516.
Jafari-Khorshidi K., Rezaeian M., Zahedifar M. and Mirhadi S. A. 2002. effect of defaunation on ruminal digestibility parameters and blood biochemicals of sheep and goat. Ph.D. thesis of science and research branch of Islamic Azad University, p. 168.
Kellems R. O. and Church D. C. 2002. Livestock feeds and feeding. 5th ed. Prentice Hall, Upper Saddle River, NJ, USA, p. 654.
Khorasani G. R., Helm J. H. and Kennelly J. J. 2000. In situ rumen degradation characteristics of sixty cultivars of barley grain. Canadian Journal of Animal Science, 80: 691-701.
Kiseleva V. I., Tester R. F., Wasserman L. A., Krivandin A. V., Popov A. A. and Yuryev V. P. 2003. Influence of growth temperature on the structure and thermodynamic parameters of barley starches. Carbohydrate Polymers, 51: 407–415.
Klopfenstein T. J., Mass R. A., Creighton K. W. and Patterson H. H. 2001. Estimating Forage Protein Degradation in the Rumen. Journal of Animal Science, 79: 20817.
Koing K. M. and Rode L. M. 2001. Ruminal degradability, intestinal disappearance, and plasma methionine response of rumen–protected methionine in dairy cows. Journal of Dairy Science, 84: 1480-1487.
Menke K. H. and Steingass H. 1988. Estimation of energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Developement, 28: 7-55.
Menke K. H., Rabb L., Saleweski A., Steingass H., Fritz D. and Schnider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feed stuffs from the gas production when they are incubated with rumen liquor In vitro. The Journal of Agricultural Science, 93: 217-222.
Nelson D. L. and Cox M. M. 2006. Lehninger Principles of Biochemistry. WH Freeman, NY, USA, p. 1119.
Orskov E. R. and McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to the passage rate. The Journal of Agricultural Science, 92: 499-503.
Ovenell-Roy K. H., Nelson M. L., Froseth J. A. and Parish S. M. 1998. Variation in chemical composition and nutritional quality among barley cultivars for ruminants. 2. Digestion, ruminal characteristics and in situ disappearance kinetics. Canadian Journal of Animal Science, 78: 377-88.
Ranilia M. J., Carro M. D., Lopez S., Newbold C. J. and Wallaco R. J. 2001. Influence of N source on the fermentation of fiber from barley straw and sugar beet pulp by ruminal micro-organisms in vitro. British Journal of Nutrition, 86: 717-724.
Reynolds W. K., Hunt C. W., Eckert J. W. and Hall M. H. 1992. Evaluation of the feeding value of barley as affected by variety and location using near infrared reflectance spectroscopy. Proceedings of Western Section of American Society of Animal Science, 43: 498.
Rigges T. J., Hanson P. R., Star N. D., Miles D. M., Morgan C. L. and Ford M. A. 1981. Comparison of spring barley varieties grown in England and Wales between 1880 and 1980. The Journal of Agricultural Science, 97: 599-610.
Sadeghi A. A. and Shawrang P. 2008. Effects of microwave irradiation on ruminal dry matter, protein and starch degradation characteristics of barley grain. Animal Feed Science and Technology, 141: 184-194.
Sauvant D. 1997. Consequences digestives et zootechniques des variations de la vitesse de digestion de l’ amidon chez les ruminants. INRA Producing Animal, 10: 287–300.
Slafer G. A. and Andrade F. H. 1991. Changes in physiological attributes of the dry matter economy of bread wheat (Triticum aestivum L.) through genetic improvement of grain yield potential at different regions of the world. Euphytica, 58: 37-49.
Susmel P., Stefanon B., Mills C. R. and Spanghero M. 1990. Rumen degradability of organic mater, nitrogen and fiber fractions in forages. Journal of Animal Production, 51: 515-526.
Tester R. F. 1997. Influence of growth conditions on barley starch properties. International Journal of Biological Macromolecules, 21: 37-45.
Tester R. F., Morrison W. R., Ellis R. H., Piggott J. R., Batts G. R., Wheeler T. R., Morrison J. I. L., Hadley P. and Ledward D. A. 1995. Effect of elevated growth temperature and carbon-dioxide levels on some physiochemical properties of wheat-starch. Journal of Cereal Science, 22: 63-71.
Theodorou M. K., Milliams B. A., Dhanoa M. S., McAllan A. B. and France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48: 185 -197.
Van Soest P. J., Robertson J. B. and Lewis B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
Wolin M. J. 1960. A theoretical rumen fermentation balance. Journal of Dairy Science, 43: 1452–1459.