Effect of different levels of zinc oxide nano particles and zinc oxide on some ruminal parameters by in vitro and in vivo methods

Document Type : Research Paper

Authors

1 Ph.D student, Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

2 Associate professor, Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

Abstract

In this study the effects of zinc oxide (ZnO) and zinc oxide nano particles (nZnO) were investigated on some parameters of rumen with either in vitro or in vivo experiments based on a completely randomized design. The experimental treatments (5 treatments) were included levels of zero (control), 20 and 40 ppm zinc as ZnO and 20 and 40 ppm zinc as nZnO  that were added to the basal diets. In in vitro experiments, rumen fermentation kinetics parameters during 144 h continuous incubation (GP144) and the volume of gas produced during the 24 h incubation (GP24) and the relevant fermentation parameters were analyzed separately. In in vivo experiments, 20 male Markhoz goat kids aged 7-8 months were fed for 14 days with experimental treatments and the pH, ammonia and total volatile fatty acids concentration and protozoa populations in rumen fluid were determined. Results showed, GP144 and GP24 and the relevant parameters (except for asymptotic gas production (A) and lag time (L)) and rumen parameters in in vivo experiment were not affected by zinc sources. No significant difference was observed between treatments for total number of protozoa. Highest number was seen for Entodinium spp. and lowest for Isotricha spp. . Overall, the levels of 20 and 40 ppm zinc as ZnO and nZnO had no effect on rumen parameters by either in vitro or in vivo methods.

Keywords


فدایی فر، الف. 1389. اثر منابع مختلف روی بر رشد، برخی فراسنجه های شکمبه و پلاسمای بره های نر مهربان. پایان نامه کارشناسی ارشد علوم دامی، دانشگاه بوعلی سینا.
Ammar H., L´opez S. and Gonz´alez J. S. 2005. Assessment of the digestibility of some Mediterranean shrubs by in vitro  techniques. Animal Feed Science and Technology, 119: 323–331.
Arelovich H. M., Amela M. I., Martinez M. F., Torrea M. B. and Laborde H. E. 2003. Diferentes fuentes de zinc en el suplemento proteico de ovinos alimentados con un forraje de baja calidad. 2. Parámetros ruminales. Argentina de Produccion Animal., 23(Supp 1), 88. [In Spanish].
Arelovich H. M., Laborde H. E., Amela M. I., Torrea M. B. and Martínez M. F. 2008. Effects of dietary addition of zinc and (or) monensin on performance, rumen fermentation and digesta kinetics in beef cattle. Spanish Journal of Agricultural Research, 6(3): 362-372.
Arelovich H. M., Owens F. N., Horn G. W. and Vizcarra J. A. 2000. Effects of supplemental zinc and manganese on ruminal fermentation, forage intake, and digestion by cattle fed prairie hay and urea. Journal of Animal Science, 78: 2972–2979
Association of Official Analytical Chemists. 2000. Official Methods of Analysis, 16th ed. USDA, Washington, DC.
Atmaca S., Gul K. and Cicek R. 1998. The effect of zinc on microbial growth. Turkish Journal of Medical Sciences, 28: 595-597.
Barnett A. G. and Reid R. L. 1957. Studies on the production of volatile fatty acid production from fresh grass. Journal of Agriculture Science, 48: 315-321.
Bateman H. G., Williams C. C. and Chung Y. H. 2002. Effects of supplemental zinc in high quality diets on ruminal fermentation and degradation of urea in vitro and in vivo. The Professional Animal Scientist, 18: 363-367.
Bateman H. G., Williams C. C., Gantt D. T., Chung Y. H., Beem A. E., Stanley C. C., Goodier G. E., Hoyt P. G.,Ward J. D., and Bunting L. D. 2004. Effects of zinc and sodium monensin on ruminal degradation of lysine-HCl and liquid 2-hydroxy-4-methylthiobutanoic acid. Journal of Dairy Science, 87: 2571–2577.
Bonhomme A., Durand M., Dumay C. and Beaumatin P., 1979. Etude in vitro du comportement des populations microbiennes du rumen en presence de zinc sous forme de sulfate. Annales De Biologie Animale, Biochimie, Biophysique. 19: 937–942.
Broderick G. A. and Kang J. H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media.  Journal of Dairy Science, 63: 64-75.
Croteau M. N., Dybowska A. D., Luoma S. N. and Valsami-Jones E. 2010. A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology, ISSN 1743-5404 Online, © 2010, In formal UK, Ltd.
Dehority B. A. 2003. Rumen Microbiology. Nottingham University Press, Nottingham, UK, pp: 372.
Dehority B. A. 1993. Laboratory manual for classification and morphology of rumen ciliate protozoa. CRC Press, Boca Raton, FL, ISBN: 0849348757, pp: 120.
Durand M. and Kawashima R. 1980. Influence of minerals in rumen microbial digestion. In: Y. Ruckenbush and P. Thivend (Ed.) Digestive physiology and Metabolism in the Ruminant. pp 375-408. AVI Publ. Co., Westport, CT.
Eryavuz A. and Dehority B. A. 2009. Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Animal Feed Science and Technology, 151: 175–183.
Eryavuz A., Durgan Z. and Keskun E. 2002. Effects of ration supplemented with zinc on some rumen and blood parameters, mohair production and quality in faunated and defaunated Angora goats. Turkish  Journal of Veterinary and Animal Science, 26 :753-760.
France J., Dijkstra J., Dhanoa M. S., Lopez S. and Bannink A. 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profile observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition, 83: 143–150.
Francisco H.-S. J., Facundo R., Diana C. C. C. P., Fidel M.-G, Alberto E. M., Amaury D. J. P. G., Humberto T.-P and Gabriel M. C. 2008. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide and gold. Nanomedicine: Nanotechnology, Biology and Medicine, 4: 237-240.
Froetschel M. A., Martin A. C., Amos H. E. and Evans J. J. 1990. Effects of zinc sulfate concentration and feeding frequency on ruminal protozoal numbers, fermentation patterns and amino acid passage in steers. Journal of Animal Science, 68: 2874–2884.
Garg A. K., Vishal M. and Dass R. S. 2008. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology, 144: 82-96.
Kathirvelan C. and Balakrishnan V. 2006. Effect of zinc supplemental on urea hydrolysis in an in vitro fermentation using rumen liquor. Malaysian Journal of Nutrition, 12: 93-99.
Kathirvelan C. and Balakrishnan V. 2008. Effect of supplemental zinc at 10 ppm on apparent, true digestibility, microbial biomass production and exploring means to overcome ill effects in cattle. Trends in Applied Science Research, 3: 103–108.
Kincaid R. L., Chew B. P., and Cronrath J. D. 1997. Zinc oxide and amino acids as sources of dietary zinc for calves: Effects on uptake and immunity. Journal of Dairy Science, 80: 1381-1388.
Kumar S. and Kayastha A. M. 2009. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids. Journal of Enzyme Inhibtion and Medicinal Chemistry, 1: 1–7.
Makkar H. P. S. 2010. In vitro screening of feed resources for efficiency of microbial protein synthesis. In: Vercoe, P.E., Makkar, H.P.S., Schlink, A.C. (Eds.), In vitro Screening of Plant Resources for Extra-nutritional Attributes in Ruminants: Nuclear and Related Methodologies. IAEA, Dordrecht, the Netherlands, pp. 107–144.
Martinez A. and Church D. C. 1970. Effect of various mineral elements on in vitro rumen cellulose digestion. Journal Animal Science, 31: 982–990
Menke K. H. and Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research Development, 28: 7–55.
National Research Council. 1980. Mineral tolerance of domestic animals. NationalAcademy of Sciences, Washington, DC, USA.
National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th ed. The National Academies Press, Washington, D.C., USA.
National Research Council. 2007. Nutrient Requirements of Small Ruminants. The National Academies Press, Washington, D.C., USA.
Notes. 1982. Duodenal flow and soluble proportions of zinc, manganes, copper and iron in the rumen fluid and duodenal digesta of faunated and defaunated sheep. Canadian Journal of Animal Science, 62: 979-982.
Ott E. A., Smith W. H., Harrington R. B., Stob M., Parker H. E. and Beeson W. M. 1966. Zinc toxicity in ruminants. III Physiological changes in tissues and alterations in rumen metabolism in lambs. Journal of Animal Science, 25: 424-431
Salama Ahmed A. K., Cajat G., Albanell E., Snch X. and Casals R. 2003. Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats. Journal of Dairy Science, 70: 9–17.
Salem A. Z. M., Ammar H., Lopez S., Gohar Y. M. and González J. S. 2011. Sensitivity of ruminal bacteria isolates of sheep, cattle and buffalo to some heavy metals. Animal Feed Science and Technology, 163: 143–149
Saravanan1 V. S., Subramoniam S. R. and Raj S. A. 2003. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZBC) isolates. Brazilian Journal of Microbiology, 34: 121-125.
Spears J. W., Schlegel P., Seal M.C. and Lloyd K. E. 2004. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 90: 211-217.
Statistical Analysis System. 2001. User’s Guide: Statistics, Version 8.2. SAS Institute, Carry, NC, USA.
Taghavi Nezhad M., Alipour D. Torabi Goudarzi M. Zamani P. and Khodakaramian G. 2011. Dose response to carvone rich essential oils of spearmint (Mentha spicata L.): in vitro ruminal fermentation kinetics and digestibility. Journal of Agriculture Science and Technoligy, 13: 1013-1020.
Talebzadeh R., Alipour D., Saharkhiz M. J., Azarfar A. and Malecky M. 2012. Effect of essential oils of Zataria multiflora on in vitro rumen fermentation, protozoal population, growth and enzyme activity of anaerobic fungus isolated from Mehraban sheep. Animal Feed Science and Technology, 172: 115– 124.
Van Soest P. J., Robertson J. B. and Lewis B. A. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch carbohydrates in relation to animal nutrition. Journal of Dairy Science, 74: 3583–3597.
Vázquez-Armijo J. F., Daniel Lopez J. J. M. T. and Rolando Rojo A. F. Z. M. S. 2011. In vitro gas production and dry matter degradability of diets consumed by goats with or without copper and zinc supplementation. Biological Trace Element Research, 144: 580–587.
Wang R. L., Liang J. G., Lu L., Zhang L. Y., Li S. F. and Luo X. G. 2013. Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows. Biological Trace Element Research, 152: 4-16.
Wedekind K. J. and Baker D. H. 1990. Zinc bioavailability in feed-grade sources of zinc. Journal of Animal Science, 68: 684-689.
Yang S., Leonard S. W., Traber M. G. and Ho E. 2009. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. The Journal of Nutrition, 139: 1626–1631.