Effect of parent type and sex on HSP70 gene expression of silkworm in response to severe heat shock

Document Type : Research Paper


1 MSc student, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Iran

2 Assistant Professor, Department of Animal Science and Department of Sericulture, Faculty of Agricultural Sciences, University of Guilan, Iran

3 Associate Professor, Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Iran


In order to study the parents and sexes effect as genetic elements on response of silkworm larva to increased temperature, the expression of HSP70 was measured in both sexes of four silkworm parents including 110 , 104 (Chinese varieties) and 103, 107 (Japanese varieties). Larvae was exposed to 35 min of heat shock at 45°C and then sampling of larval fat body was done at zero, two, four and twenty-four hours after heat shock in the fourth day of the fifth instar. After RNA isolation and determination of HSP70 relative gene expression by qRT-PCR, results showed that the gene expression in female was 13.8 times of male larvae with high significant differences (P<0.0001). Therefore, the comparison of silkworm parents in the four times samplings were done by factorial analysis and Duncan’s test in each sex separately. HSP70 gene expression differences among varieties was highly significant (P<0.0001). 107 and 110 varieties showed the highest expression of HSP70 gene (552 and 53) among female and male silkworm larvae groups, respectively. This gene was increasingly expressed immediately after heat exposure, but there were no significant differences between the times of zero and 2 hour after heat shock. Thermal tolerance test showed that two varieties of 110 and 107 (0.63 and 0.44) had less mortality and more tolerant than 103 and 104 (0.94 and 0.74). The results showed that the 103 variety which had the lowest HSP70 expression, was also so sensitive to heat stress.


Main Subjects

حسینی مقدم، س. ح. 1392. اصول پرورش کرم ابریشم. انتشارات دانشگاه گیلان. صفحات 15-5.
 قیامی، ر. 1390. بررسی عملکرد تولیدی وبیان ژن رمزکننده پروتئین های شوک حرارتی کوچک مولکولsHSP در واریته­های  کرم ابریشم در پاسخ به شوک های حرارتی، پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه گیلان.
Bettencourt B. R., Hogan C. C., Nimali M. and Drohan B. W. 2008. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biology, 6: 5
Chen H., Xu X. L., Li Y. P. and Wu J. X. 2014. Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult of Grapholita molesta (Busck). Journal of Insect Science, 4: 439-448.
Chown S. L. and Nicolson S. W. 2004. Insect Physiological Ecology (Mechanism and patterns), Lethal Temperature Limits. New York: Oxford University Press. pp. 122-124.
Clarke A. 2003. Costs and consequences of evolutionary temperature adaptation. Journal of Trends in Ecology and Evolution, 18: 573–581.
De Jonge H. J. M., Fehrmann R. S. N., De Bont E. S. J. M., Hofstra R. M. W., Gerbens F., De Vries E. G. E., Van der Zee A. G. J., Te Meerman G. J. and Ter Elst A. 2007. Evidence Based Selection of Housekeeping Genes. PLoS ONE 2(9): e898. doi:10.1371/journal.pone.0000898.
Evgen’ev M. B., Garbuz D. G. and Zatsepina O. G. 2005. Heat Shock Proteins: Functions and Role in Adaptation to Hyperthermia. Journal of Developmental Biology, 4: 218–224.
Garbuz D. G., Molodtsov V. B., Velikodvorskaia V. V., Evgenev M. B. and Zatsepina O. G. 2002. Evolution of the response to heat shock in genus Drosophila. Russian Journal of Genetics,38: 925-936.
Gehring W. J. and Wehner R. 1995. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proceedings of the National Academy of Sciences, 92(7): 2994-2998
Guerra D., Loeschcke V. and Cavicchi S. 2000. Chromosomal and cytoplasmic analysis of heat shock resistance in natural population of Drosophila melanogaster. Hereditas, 132: 143–149.
Hu J. T., Chen B. and Li Z. H. 2014. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies. Journal of Insect Physiology, 67: 105–113.
Hosseini Moghaddam S. H., Du X., Li J., Cao J., Zhong B. and Chen Y. Y. 2008. Proteome analysis on differentially expressed proteins of the fat body of two silkworm breeds Bombyx mori exposed to heat shock exposure. Journal of Biotechnology and Bioprocess Engineering, 13: 624-631.
Hsieh F. K., Yu S. J., Su S. Y. and Peng S. J. 1995. Studies on the Thermotolerance of the Silkworm, Bombyx mori. Chinese Journal of Entomology, 15: 91-101.
Huang L. H., Chen B. and Kang L. 2007. Impact of mild temperature hardening on thermotolerance fecundity and HSP gene expression in Liriomyza huidobrensis. Journal of Insect Physiology, 53: 1199–1205.
Jiang X., Zhai H., Wang L., Luo L., Sappington T. W. and Zhang L. 2012. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development. Journal of Cell Stress and Chaperones, 17: 67–80.
Joy O. and Gopinathan K. T. P. 1995. Heat shock response in mulberry silkworm races with different thermotolerances. Journal of Biosciences, 20: 499-513.
Kalosaka K., Soumaka E., Politis N. and Mintas A. C. 2009. Thermotolerance and HSP70 expression in the Meditrranean fruit fly Ceratitis capitata. Journal of Insect physiology, 55(6): 568-573.
King A. M. and MacRae T. H. 2015. Insect heat shock proteins during stress and diapause. Journal of Annual Review of Entomology, 60: 59-75.
Li J., Hosseini Moghaddam S. H., Du X., Zhong B. and Chen Y. Y. 2011. Comparative analysis on the expression of inducible HSPs in the silkworm, Bombyx mori. Journal of Molecular Biology Reports, 1-9.
Li H. B. and Du Y. Z. 2013. Molecular cloning and characterization of an Hsp90/70 organizing protein gene
from Frankliniella occidentalis (Insecta: Thysanoptera, Thripidae). Journal of Gene, 520: 148–55.
Liu W. W., Yang P., Chen X. M., Xu D. L. and Hu Y. H. 2014. Cloning and expression analysis of four heat shock protein genes in Ericerus pela (Homoptera: Coccidae). Journal of Insect Science, 14: 1-9.
Lovell R., Madden L., McNaughon L. R. and carrol S. 2007. Effect of active and passive hyperthermia on heat shock protein 70 (HSP70). Journal of Amino Acids, 34: 203-211.
Lu Z. C. and Wan F. H. 2010. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). Journal of Experimental Biology, 214: 764-76.
Luo S., Ahola V., Shu C., Xu C. and Wang R. 2015. Heat shock protein 70 gene family in the Glanville fritillary butterfly and their response to thermal stress. Journal of Gene, 132-141.
Mayer M. P. and Bukau B. 2004. Hsp70 chaperones: cellular functions and molecular mechanism. Journal of Cellular and Molecular Life sciences, 62: 670-684.
Rahmathulla V. K. 2012. Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review. Psyche: A Journal of Entomology, Article ID:121234, 12 pages.
Schoville S. D., Barreto F. S., Moy G. W., Wolff A. and Burton R. S. 2012. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. Journal of BMC Evolutionary Biology, 12-170.
Singh A. K. and Lakhotia S. C. 2000. Tissue-specific variations in the induction of HSP70 and HSP64 by heat shock in insects. Journal of Cell Stress and Chaperons, 5(2): 90-97.
Sreekumar S., Chitra S., Ashwath S. K. and Rajesh G. K. 2007. Comparison of haemolymph protein profiles between multivoltine and bivoltine silkworm breeds under temperature stress. In: Proceeding of International Conference on  Sericulture Challenges the 21st Century, 18-21 Sep. Bulgaria, pp. 125.
Velu D., Ponnuvel K. M. and Hussaini Qadri S. M. 2008. Expression of the heat shock protein genes in response to thermal stress in the silkworm Bombyx mori. International Journal of Industrial Entomology, 16(1): 21-27.
Wang X. H. and Kang L. 2005. Differences in egg thermotolerance between tropical and temperate populations of themigratory locust Locusta migratoria Orthop-tera: Acridiidae. Journal of Insect Physiology, 51: 1277–1285.
Wang L., Yang S., Zhao K. and Han L. 2015. Expression profiles of the heat shock protein 70 gene in response to heat stress in Agrotis c-nigrum (Lepidoptera: Noctuidae). Journal of Insect Science, 15 (1): 9.