Genome scan of Japanese quail chromosome 5 for detecting QTLs of growth traits

Document Type : Research Paper

Authors

1 MSc. Graduated in Animal Breeding, Department of Animal Science, Agriculture Faculty, University of Zabol, Zabol, Iran

2 Associate Professor of Animal Breeding and Genetics, Department of Animal Science, Agriculture Faculty, University of Zabol, Zabol, Iran

3 Assistant Professor of Animal Breeding and Genetics, Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran

4 Assistant Professor of Animal Breeding, Department of Animal Science and Bioinformatics, Agriculture Faculty, University of Zabol, Zabol, Iran

5 Associate Professor of Animal Breeding, Department of Animal Science and Bioinformatics, Agriculture Faculty, University of Zabol, Zabol, Iran

Abstract

The aim of this study was to partial genome scan (chromosome 5) of Japanese quail to detect QTLs affecting growth traits based on
a four-generation partial diallele cross design in Special Domestic Animals Research Center of University of Zabol. For this purpose,
four strains of Wild (A), A and M of Texas (B), Italian Speckled (C) and Tuxedo (D) Japanese quails were crossed in two-strain
reciprocal method and were created the first generation. Grandparents and fourth parents (18 and 36 birds, respectively) and all
birds of fourth generation (315 birds) were genotyped for three microsatellite markers
on chromosome 5. Also, all birds from hatch
to 45 days were weighted at
5-day intervals. The QTL analysis was carried out using a regression-based interval mapping method
and
additive genetic model using GridQTL software. The results showed three different QTLs for hatch weight, weights at 15 and
20 days of age in 4.65, 16.03 and 15.63 cM, respectively.Therefore, if the adjacent marker information be entered in equation
of breeding values estimation, it can lead to improve the reliability of prediction breeding value and finally result in genetic progress.

Keywords

Main Subjects


ایرانمنش م.، اسماعیلی زاده کشکوئیه ع.، محمدآبادی م.، و سهرابی س. 1395. شناسایی جایگاه‌های ژنی موثر بر سرعت رشد و نسبت کلیبر روی کروموزوم شماره پنچ بلدرچین ژاپنی. تحقیقات تولیدات دامی، 5: 12-22.
سهرابی س. 1390. نقشه­یابی جایگاه­های ژنی (QTL) مرتبط با رشد روی کروموزوم شماره 1 در بلدرچین ژاپنی. پایان نامه کارشناسی ارشد علوم دامی. دانشکده کشاورزی. دانشگاه شهید باهنر کرمان.
Buchanan F. C. and Thue T. D. 1998. Intrabreed polymorphic information content of microsatellites in cattle and sheep. Canadian Journal of Animal Science, 78: 425-428.
Charati H. and Esmailizadeh A. K. 2013. Carcass traits and physical characteristics of eggs in Japanese quail as affected by genotype, sex and hatch. Journal of Livestock Science and Technologies, 2(1): 59-64.
Churchill G. A. and Doerge R. W. 1994. Empirical threshold values for quantitative trait mapping. Genetics, 138: 963-971.
Dekkers J. C. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science, 82: E313-E328.
‏Esmailizadeh A. K., Baghizadeh A. and Ahmadizadeh M. 2012. Genetic mapping of quantitative trait loci affecting bodyweight on chromosome 1 in a commercial strain of Japanese quail. Animal Production Science, 52(1): 64-66.
Groenen M. A., Cheng H. H., Bumstead N., Benkel B. F., Briles W. E., Burke T., Burt D. W., Crittenden L. B., Dodgson J., Hillel J., Lamont S., de Leon A. P., Soller M., Takahashi H. and Vignal A. 2000. A consensus linkage map of the chicken genome. Genome Research, 10(1): 137-147.
Jabbari Ori R., Esmailizadeh, A. K., Charati H., Mohammadabadi M. R. and Sohrabi S. 2014. Identification of QTL for live weight and growth rate using DNA markers on chromosome 3 in an F2 population of Japanese quail. Molecular Biology Reports, 41: 1049-1057.
Kayang B. B., Vignal A., Inoue-Murayama M., Miwa M., Monvoisin J. L., Ito S., Minvielle F. 2004. A first-generation microsatellite linkage map of the Japanese quail. Animal Genetics, 35: 195-200.
Liu X., Li H., Wang S., Hu X., Gao Y., Wang Q., Li N., Wang Y. and Zhang H. 2007. Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poultry Science, 86 (6): 1084-1089.
Merril C. R., Dunau M. L. and Goldman D. 1981. A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Analytical Biochemistry, 110: 201-207.
Minvielle F., Kayang B. B., Inoue-Murayama M., Miwa M., Vignal A., Gourichon D., Neau A., Monvoisin J. L. and Ito S. I. 2005. Microsatellite mapping of QTL affecting growth, feed consumption, egg production, tonic immobility and body temperature of Japanese quail. BMC Genomics, 6: 87.
Moradian H., Esmailizadeh A. K., Mohammadabadi M. R. and Sohrabi S. 2015.  Identification of quantitative trait loci associated with weight and percentage of internal organs on chromosome 1 in Japanese quail. Agricultural Biotechnology, 6(4): 143-158.
Moradian H., Esmailizadeh A. K., Sohrabi S., Nasirifar E., Askari N., Mohammadabadi M. R. and Baghizadeh A. 2014. Genetic analysis of an F2 intercross between two strains of Japanese quail provided evidence for quantitative trait loci affecting carcass composition and internal organs. Molecular Biology Reports, 41: 455-462.
Primmer C. R., Raudsepp T., Chowdhary B. P., Møller A. P. and Ellegren H. 1997. Low frequency of microsatellites in the avian genome. Genome Research, 7: 471-482.
Rezvannejad E. 2014. Productive, reproductive performance and biochemical parameters of short-term divergently selected Japanese quail lines and their reciprocal crosses. Journal of Livestock Science and Technologies, 1(2): 35-42.
‏Seaton G., Hernandez J., Grunchec J. A., White I., Allen J., De Koning D. J. and Knott S. 2006. GridQTL: a grid portal for QTL mapping of compute intensive datasets. In Proceedings of the 8th world congress on genetics applied to livestock production. Belo Horizonte Brazil.
Sohrabi S., Esmailizadeh A. K., Mohammadabadi M. R. and Moradian H. 2014. Mapping Quantitative Trait Loci underlying Kleiber ratio and identification of their mode of action in an F2 population of Japanese quail (Coturnix coturnix japonica). Agricultural Biotechnology, 6(1): 111-122.
Zane L., Bargelloni L. and Patarnello T. 2002. Strategies for microsatellite isolation: a review. Molecular Ecology, 11(1): 1-16.
Zhang S., Li H. and Shi H. 2006. Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9-polymorphism reveals association with body growth and obesity. Poultry Science, 85:178-184.