Investigating chemical composition and effect of different dietary levels of whole cucumber plant on rumen fermentation kinetics and nutrients digestibility in vitro

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

2 Ph.D Student, Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

3 Animal Science Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center AREEO, Ahvaz, Iran

Abstract

This study was conducted to evaluate nutritive value of whole cucumber plant (WCP) and then, assessing its different dietary levels effects on in vitro gas production and rumen fermentation parameters using cow rumen liqour. For this purpose, firstly chemical composition and rumen fermentation kinetics of WCP were compared with wheat straw (WS) and alfalfa hay. After that, the effects of substituting levels of 0, 5, 10, 15 and 20% WCP for forage part of the diet were investigated on in vitro digestion and fermentation parameters. Results indicated that WCP had lower dry matter (DM), organic matter (OM) and lignin contents than alfalfa and WS (p < /em><0.05). However, its crude protein (CP) was considerably higher than WS and also was comparable with alflalfa CP content. Neutral detergent fibre and acid detergent fibre contents of WCP were lower than WS (p < /em><0.05), but they were similar to alfalfa. Incubation of WCP showed higher total gas production (GP), potential of GP (b), DM and OM digestibility and microbial mass production than WS, while they were lower than alfalfa (p < /em><0.05). In conclusion, results of present study showed that WCP has favourable chemical composition and nutritive value compared to WS, and its CP content also is comparable with alfalfa. Moreover, its incorporation in ruminant nutrition up to 20% of diet is recommended.

Keywords

Main Subjects


آمارنامه کشاورزی. 1395. وزارت جهاد کشاورزی. جلد اول. 125 ص.
عباسی ا.، فضائلی ح.، زاهدی‌فر م.، میرهادی س. ا.، گرامی ع.، تیمورنژاد ن.، و علوی س. م. 1395. جداول ترکیبات شیمیایی منابع خوراک دام و طیور ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، 80 ص.
کریمی مسکونی ن. 1395. اندازه‌گیری ترکیب شیمیایی و گوارش‌پذیری آزمایشگاهی بوته خیار و سیلاژ آن. پایان نامه کارشناسی ارشد دانشگاه جیرفت.
موسوی س. غ.، محمدزاده ح.، فتاح‌نیا ف.، و شکری، ع. ن. 1392. تعیین ترکیبات شیمیایی، انرژی و فراسنجه‌های تجزیه‌پذیری شکمبه‌ای پسمانده های میوه و تره‌بار در گوسفندان فیستولادار کردی. تحقیقات تولیدات دامی، 4: 13-23.
Association of Official Analytical Methods. 1990. Official methods of analysis, K. Helrich, 15th ed., AOAC, Arlington, VA.
Blümmel M., Steingss H. and Becker K. 1997a. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77: 911-921.
Blümmel M., Makkar H. P. S. and Becker, K. 1997b. In vitro gas production: A technique revisited. Journal of Animal Physiology and Animal Nutrition, 77: 24-34.
Broderick G. and Kang J. H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63: 64-75.  
El-Waziry A. M., Alkoaik F., Khalil, A. I., Metwally H. and Al-Mahasneh M. A. 2013. Evaluation of tomato and cucumber wastes as alternative feeds for ruminants using gas production technique in vitro. Asian Journal of Animal and Veterinary Advance, 8: 821-826.
Getachew G., Blummel M., Makkar H. P. S. and Becker K. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology, 72: 261-281.
Getachew G., Makkar H. P. S. and Becker K. 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. Journal of Agricultural Science, 139: 341-352.
Marten G. C. and Barnes R. F. 1980. Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzymes systems. In: Pidgen WJ Balch CC and Graham M (Eds), Standardization of analytical methodology for feeds. (pp 61-71) International Development Research Center, Ottawa.
McDonald P., Edwards R. A., Greenhalgh J. F. D., Morgan C. A., Sinclair L. A. and Willkenson R. G. 2011. Animal Nutrition, 7th ed., Longman publisher, UK. 693 pp.
Menke K. H. and Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Animal Research and Development, 28: 7-55.
NRC. 2001. Nutrient requirements of dairy cattle. 7th Revised Edition, Subcommittee on Dairy Cattle Nutrition, Committee on Animal Nutrition, Board on Agriculture and Natural Resources, National Research Council, National Academy Press, Washington, D.C.
Salem A. Z. M. 2012. Oral administration of leaf extracts to rumen liquid donor lambs modifies in vitro gas production of other tree leaves. Animal Feed Science and Technology, 176: 94-101.
SAS. 2005. User’s Guide: Statistics, Version 9.0 Edition. SAS Inst. Inc., Cary, NC.
Soto E. C., Khelil H., Carro M. D., Yaniz-Ruiz D. R. and Molina-Alcaide E. 2015. Use of tomato and cucumber waste fruits in goat diets: effects on rumen fermentation and microbial communities in batch and continuous cultures. The Journal of Agricultural Science, 153: 343-352.
Van Soest P. J., Robertson J. B. and Lewis B. A. 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
Vercoe P. E., Makkar H. P. S. and Schlink A. C. 2010. In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies. Springer Verlag Gmbh.
Wadhwa M. and Bakshi M. P. S. 2013. Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. FAO, RAP Publication.