Mathematical description of growth curve in Kurdish sheep using artificial neural network and its comparison with non-linear models

Document Type : Research Paper

Authors

1 Associate Professor of Animal Genetics and Breeding, Animal Science Research Institute of Iran, Agriculture Research, Education, and Extension Organization (AREEO), Karaj, Iran

2 Assistant Professor of Animal Genetics and Breeding, Agriculture and Natural Resources Research Center of Khorasan Razavi, Agriculture Research, Education, and Extension Organization (AREEO), Mashhad, Iran

3 Associate Professor, Land Resources Management (Soil Conservation Engineering), Department of Rangeland and Watershed Management, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran

Abstract

The objective of this study was to compare artificial neural network (ANN) with non-linear models including Brody, Gompertz, Logistic and von Bertalanffy for predicting the growth curve of Kurdish sheep. The database comprised of 17659 body weights from birth to yearling of 5074 lambs belonging to 162 rams and 1968 ewes during 1996-2013. The ANN model was developed according to three-multilayer perceptron with five nodes in each layer, Sigmoid-Axon function and Levenberg-Marquat learning rule by Neuro Solution software. Non-linear models were analyzed by the NLIN procedure of SAS program. The goodness of fit of models and their comparisons were conducted by using the coefficient of determination (R2), residual mean square (MSE), root of the residual mean square (RMSE), mean absolute deviation (MAD), Akaike’s information criterion (AIC) and Bayesian information criterion information criterion (BIC). The influences of fixed effect on model parameters were analyzed on the optimum model. The results revealed that the ANN had the highest accuracy (r= 0.9735) and the lowest error (MSE= 0.9170, RMSE= 3.452, MAD= 2.424) and described the growth curve better than the other models. Among all non-linear models, the Brody model had the highest coefficient of determination (R2= 0.966) and the lowest AIC, BIC, MAD and RMSE values indicating the best fit for both sexes. Male lambs, single lambs and those gave birth in winter had the highest mature weight and growth rate. The evaluation criteria indicated that the ANN had a suitable potential to predict growth curve of Kurdish sheep, after that the Brody model fitted the data better than the other non-linear models.

Keywords

Main Subjects


بحرینی بهزادی م. ر. 1394. مقایسه مدل‌های مختلف رشد و شبکه‌های عصبی مصنوعی در برازش منحنی رشد در گوسفند لری-بختیاری. پژوهش در نشخوارکنندگان، 3: 125-148.
بیرانوند ف، بیگی نصیری م. ت.، مسعودی ع.، و شعبانی نژاد ع. 1396. بررسی صفات رشد گوسفند لری با استفاده از مدل‌های غیرخطی و شبکه عصبی مصنوعی بهینه شده با الگوریتم ژنتیک. پژوهش‌های علوم دامی، 27: 129-142.
خیرآبادی خ. 1395. مقایسه عملکرد برخی از توابع غیرخطی در توصیف منحنی رشد گوسفند نژاد زندی. علوم دامی ایران، 47: 609-619.
خیرآبادی خ.، و محمدی ی. 1396. ارزیابی توابع ریاضی در برآورد عملکرد رشد گوسفند نژاد عربی. علوم دامی، 115: 127-136.
Aman Ullah M., Amin M. and Ansar Abbas M. 2013.Non-linear regression models to predict the lamb and sheep weight growth. Pakistan Journal of Nutrition, 12: 865-869.
Arango J. A. and Van Vleck L. D. 2002. Size of beef cows: Early ideas new developments. Genetic and Molecular Research, 1: 51-63.
Assan N. 2013. Bioprediction of body weight and carcass parameters from morphometric measurements in livestock and poultry. Scientific Journal of Review, 2: 140-150.
Bahreini Behzadi M. R and Aslaminejad A. A. 2010. A comparison of neural network and nonlinear regression predictions of sheep growth. Journal of Animal and Veterinary Advances, 9: 2128-2131.
Bahreini Behzadi M. R., Aslaminejad A. A., Sharifi A. R. and Simianer H. 2014. Comparison of mathematical models for describing the growth of Baluchi sheep. Journal of Agricultural Science and Technology, 14: 57- 68.
Bathaei S. S. and Leroy P. L. 1998. Genetic and phenotypic aspects of the growth curve characteristics in Mehraban Iranian fat-tailed sheep. Small Ruminant Research, 29: 261-269.
Bishop C. M. 2006. Pattern recognition and machine learning. Springer, New York. 740 Pp.
Daskiran I., Koncagul S. and Bingol M. 2010. Growth characteristics of Indigenous Norduz female and male lambs. Journal of Agricultural Sciences, 16: 62-69.
Eyduran E., Kucuk M., Karakus K. and Ozdemir T. 2008.New approaches to determination of the best nonlinear function describing growth at early phases of Kivircik and Morkaraman breeds. Journal of Animal and Veterinary Advances, 7: 799-804.
Gayawan E. and Ipinyomi R. A. 2009. A comparison of Akaik, Schwarz and R square criteria for model selection using some fertility models. Australian Journal of Basic and Applied Science, 3: 3524-3530.
Gbangboche A. B., Glele-Kakai R., Salifou S., Albuquerque L. G. and Leroy P. L. 2008. Comparison of non-linear growth models to describe the growth curve in west African dwarf Sheep. Animal, 2: 1003-1012.
Ghavi Hossein-Zadeh N. 2015. Modeling the growth curve of Iranian Shall sheep using non-linear growth models. Small Ruminant Research, 130: 60-66.
Ghavi Hossein-Zadeh N. and Golshani G. 2016. Comparison of non-linear models to describe growth of Iranian Guilan sheep. Revista Colombiana de Ciencias Pecuarias, 29: 199-209.
Gille U. 2010. Analysis of growth. From http://www.uni-leipzig.de/~vetana/growth.htm.
Hojjati F. and Ghavi Hossein-Zadeh N. 2017. Comparison of non-linear growth models to describe the growth curve of Mehraban sheep. Journal of Applied Animal Research, 46: 499-504.
Keskin I., Dag B., Sariyel V. and Gokmen M. 2009. Estimation of growth curve parameters in Konya Merino sheep. South African Journal of Animal Science, 39: 163-168.
Kucuk M. and Eyduran E. 2009. The determination of the best growth model for Akkaraman and German Blackheaded Mutton x Akkaraman B1 cross breed lambs. Bulgarian Journal of Agricultural Science, 15: 90-92.
Kum D., Karakus K. and Ozdemir T. 2010. The best non-linear function for body weight at early phase of Norduz female lambs. Trakia Journal of Sciences, 8: 62-67.
Lamb N. R., Navajas E. A., Simm G. and Bunger L. 2006.A genetic investigation of various growth models todescribe growth of lambs of two contrasting breeds. Journal of Animal Science, 86: 2642-2654.
Poli A. A. and Cirillo M. C. 1993. On the use of normalized mean square error in evaluating dispersion model performance.Atmospheric Environment, 27A: 2427-2434.
Roush W. B. and Branton S. L. 2005. A comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poultry Science, 84: 404-502.
Roush W. B., Dozier W. A. and Branton S. L. 2006.Comparison of Gompertz and neural network models of broiler growth. Poultry Science, 85: 794-797.
Tariq M. M., Iqbal F., Eyduran E., Bajwa M. A., Huma Z. E. and Waheed A. 2013. Comparison of non-linear functions to describe the growth in Mengali sheep breed of Balochistan. Pakistan Journal of Zoology, 45: 661-665.
Shahinfar S., Mehrabani-Yeganeh H., Lucas C., Kalhor A., Kazemian M. and Weigel K. A. 2012. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems. Computational and Mathematical Methods in Medicine, 2012: 127130. doi:10.1155/2012/127130.
Ulutas Z., Sezer M., Aksoy Y., Sirin E., Sen U., Kuran M. and Akbas Y.  2010. The effect of birth types on growth curve parameters of Karayaka Lambs. Journal of Animal and Veterinary Advance, 9: 1384-1388.
Zakizadeh S., Jafari M. and Memarian H. 2014. An expert integration for growth rate simulation of sheep. In Proceeding of 65th Annual Meeting of the European Federation of Animal Science. August 2014, Denmark.
Zhang Q. J., Gupta K. C. and Devabhaktuni V. K. 2003. Artificial neural networks for RF and microwave design-From theory to practice. IEEE Transactions on Microwave Theory and Techniques. 51(4): 1339-1350.