Effect of wheat particle size and different levels of enzyme supplement on performance, carcass traits, and small intestine morphology of Japanese quail

Document Type : Research Paper

Authors

1 MSc Student of Animal Nutrition, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

2 Associate Professor, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

Abstract

This experiment was conducted to investigate the effect of wheat particle size and different levels of enzyme on performance, carcass traits, and small intestine morphologyof Japanese quails. A 3 × 3 factorial arrangement in a completely randomized design was used in nine experimental treatments replicated four times with 20 birds per replicate. The investigated factors were three wheat grain particle sizes (2, 3, and 3.5 mm) and three levels of dietary enzyme supplement (0, 200, and 400 ppm). The measured traits included: performance, carcass traits, and small intestine morphology. The results showed that the dietary enzyme significantly reduced feed intake and feed conversion ratio (P<0.01). The effect of wheat particle size on feed intake, body weight, and feed conversion ratio were also significant (P<0.01). The interaction effect of wheat particle size and enzyme affected significantly feed intake and feed conversion ratio through the experimental period from 7-35 days of age (P<0.01).Relative weights of proventriculus, gizzard, and liver were significantly reduced by enzyme supplementation (P<0.05). The relative weight of the breast significantly increased by dietary enzyme addition (P<0.01). Enzyme supplementation also significantly increased the villi length of the jejunum (P<0.01). In conclusion, dietary inclusion of wheat grain at 2 mm diameter particle size supplemented by 400 ppm enzyme is recommended.

Keywords

Main Subjects


حیدری صادق ب. 1394. بررسی تأثیر جدایه باکتری‌های اسید دوست روده گونه سبزقبا بر عملکرد، فراسنجه های خونی و جمعیت میکروبی روده بلدرچین ژاپنی. پایان‌نامه کارشناسی ارشد دانشگاه بیرجند. ص. 67-69.
کریمی ا.، اسکات ت.، کامیاب ع.، نیکخواه ع.، و مرادی م. 1381. اثر عمل آوری، سطح آنزیم و افزودن آنتی بیوتیک به جیره گندم دار بر روی مقدار انرژی قابل متابولیسم ظاهری، عملکرد و توسعه دستگاه گوارشی جوجه‌های گوشتی نر. علوم کشاورزی ایران، 33(3): 421-431.
ملک زادگان ا.، زاغری م.، شیوازاد م.، و خلجی س. 1389. تأثیر افزودن یک مولتی آنزیم تجاری حاوی فیتاز میکروبی بر عملکرد جوجه‌های گوشتی در جیره‌هایی با کمبود فسفر. چهارمین کنگره علوم دامی ایران، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.
ملکوتی م.، و خادمی ز. 1383. روش های نوین تغذیه گندم. انتشارات سنا، تهران.
Abdollahi M. R., Ravindran V., Wester T. J., Ravindran G. and Thomas D. V. 2011. Influence of feed form and conditioning temperature on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broiler starters fed wheat-based diet. Animal Feed Science and Technology, 168: 88-99.
Allen G. M., Bedford M. R. and McCracken K. J. 1996. Effect of rate of wheat inclusion and enzyme supplementation on diet metabolisability and broiler performance. British Poultry Science, 37: S44-S45.
Amerah A. M., Ravindran V., Lentle R. G. and Thomas D. G. 2007. Feed particle size: implications on the digestion and performance of poultry. Poultry Science, 63: 439-455.
Annison G. and Choct M. 1991. Anti-nutritive activities of creals non-starch polysaccharides in broiler diets and strategies minimizing their effects. World’s Poultry Science Journal, 47: 232-242.
Banfield M. J., Kwakkel R. P. and Forbes J. M. 2002. Effects of wheat structure and viscosity on coccidiosis in broiler chickens. Animal Feed Science and Technology, 98: 37-48.
Bedford M. R. 2002. The role of carbohydrases in feedstuff digestion. In Poultry feedstuffs, (McNab, J.M. and Boorman, K.N. editors). CAB International, Wallingford, UK, pp. 319-336.
Bedford M. R. and Schulze H. 1998. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews, 11: 91-114.
Brenes A., Guenter W., Marquardt R. and Rotter B. A. 1993. Effect of B-glucanase- pentosanase enzyme supplementation on the performance of chickens and laying hens feed wheat, barley, naked oats and rye diets. Canadian Journal of Animal Science, 73: 941-951.
Brenes A., Smith M., Guenter W. and Marquardt R. R. 1993. Effect of enzyme supplementation on the performance and digestive tract size of broiler chickens fed wheat- and barley-based diets. Poultry Science, 72: 1731-1739.
Classen H. l. and Bedford M. R. 1991. The use of enzymes to improve the nutritivevalue of poultry feed. In recent advances in animal nutrition. eds.W. Haresign and D. J. A. Cole(. Butterworth, London, pp. 79-102.
Deschepper K., Lippens M., Huyghebaert G. and Molly K. 2003. The effect of aromabiotic and GALI D’OR on technical performances and intestinal morphology of broilers. In: Proccedings of 14th. European Symposium on Poultry Nutrition. August Lillehammer. Norway. P. 189.
Dusel G., Kluge H. and Jeroch H. 1998. Xylanase supplementation of wheat–based rations for broilers: Influence of wheat characteristics. Journal of Applied Poultry Research, 7: 119-131.
Esteve-Garcia E., Brufau J., Perez-Vendrell A., Miquel A. and Duven K. 1997. Bioefficacy of enzyme preparations containing β-glucanase and xylanase activities in broiler diets based on barley or wheat, in combination with flavomycin. Poultry Science, 76: 1728-1737.
Gabrie I., Mallet S., Leconte M., Travel A. and Lalles J. 2007. Effects of whole wheat feeding on the development of the digestive tract of broiler chickens. Animal Feed Science and Technology, 142: 144-162.
Gonzalez-Alvarado J. M., Jiménez-Moreno E., Valencia D. G., Lazaro R. and Mateos G. G. 2008. Effects of fiber source and heat processing of the cereal on the development and pH of the gastrointestinal tract of broilers fed diets based on corn or rice. Poultry Science, 87: 1779-1795.
Goodband R. D., Tokach M. D. and Nelssen J. L. 2002. The effects of diet particle size on animal performance. MF-2050 Feed Manufacturing, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA, p. 6.
Gous R. M. and Iji P. A. 2001. Evaluating the route of administration of an exogenous microbial enzyme for broiler chickens. Journal of Applied Poultry Reserch, 10: 150-153.
Gutiriez del Alamo A., Vetstegen M. W. A., Pen Hartog L. A., Perez de Ayala P. and Villamide M. J. 2008. Effect of wheat cultivar and enzyme addition to broiler chicken diets on nutrient digestibility, performance, apparent metabolisable energy content. Poultry Science, 87: 759-769.
Hakansson J., Eriksson S. and Svensson S. A. 1978. The influence of feed energy level on feed consumption, growth and development of different organs of chicks. Reprort No. 57. Uppsala: Swedish University of Agriculture. Science. Pp. 1-54.
Iji P. A., Saki A. A. and Tivey D. R. 2001a. Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Animal Feed Science and Technology, 89: 175-188.
Iji P. A., Saki A. A. and Tivey D. R. 2001b. Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. Journal of the Science of Food and Agriculture, 81: 1192-1186.
Jaroni D., Scheideler S. E., Beck M. M. and Wyatt C. 1999. The effect of dietary wheat middlings and enzyme supplementation II: Apparent nutrient digestibility, digestive tract size, gut viscosity, and gut morphology in two strains of leghorn hens. Poultry Science, 78: 1664-1674.
Kaur S., Mandal A. B., Singh K. B. and Kadam M. M. 2007. The response of Japanese quails (heavy body weight line) to dietary energy levels and graded essential amino acid levels on growth performance and immuno-competence. Livestock Science, 117: 255-260.
Koch K. 1996. Hammermills and rollermills. MF-2048 Feed Manufacturing, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA, p. 8.
Lentle R. G., Ravindran V., Ravindran G. and Thomas D. V. 2006. Influence of feed particle size on the efficiency of broiler chickens fed wheat based diets. Journal of Poultry Science, 43: 135-142.
Mathlouthi N., Saulnier L., Quemener B. and Larbier M. 2002. Xylanase, beta-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and beta -glucanase used alone or in combination. Journal of Agricultural and Food Chemistery, 50: 5121-5127.
Mathlouti N., Mohamed M. A. and Larbier M. 2003. Effect of enzyme preparation containing zylanase and β-glucanase on performance of laying hens fed wheat/barley or maiz/soybean meal-based diets. British Poultry Science, 44: 60-66.
McNab J. M and Boorman K. N. 2002. Poultry feedstuffs. CABI Publishing.
Meng X., Slominski B. A., Nyachoti C. M., Campbell L. D. and Guenter W. 2005. Degradation of cell wall polysaccharides combinations of carbohydrase enzyme and their effect on nutrient utilization and broiler chicken performance. Poultry Science, 84: 37-47.
Mohammed A. H. 1995. Barley varieties, enzyme supplementation, and broiler performance. Journal of Applied Poultry Research, 4: 230-234.
Montagne L., Pluske J. and Hampson D. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108: 95-117.
Nadeem M. A., Anjum M. I., Khan A. G. and Azim A. 2005. Effect of dietary supplementing of non-starch polysaccharide degrading enzymes on growth performance of broiler chicks. Pakistan Veterinary Journal, 25(4): 183-188.
Petterson D. and Aman P. 1989. Enzyme supplementation of a poultry diet containing rye and wheat. Britsih Journal of Nutrition, 62: 139-149.
Ravindran V., Selle P. and Bryden W. 1999. Effect of phytase supplementation individually and in combination with glycanase on nutritive value of wheat and barley. Poultry Science, 78: 1588-1595.
Rubio L. A., Brenes A. and Castano M. 1990. The utilization of raw and autocalved faba beans (Vicia faba L., var. minor) and faba bean fractios in diets for growing broiler chickens. Britsih Journal of Nutrition, 63: 419-433.
Santos J. A. A., Ferket P. R., Grimes J. L. and Edens F. W. 2004. Dietary pentosanase supplementation of diets containing different qualities of wheat on growth performance and metabolizable energy of turkey poults. International Journal of Poultry Science, 3: 33-45.
Sayyazadeh H., Rahimi G. and Rezaei M. 2006. Influence of enzyme broiler supplementation of maize, wheat and barley-based diets on the performance of chickens. Pakistan Journal of Biological Science, 9(4): 616-621.
Selle P. H., Ravidran V., Ravidran G., Pittolo P. H. and Bryden W. L. 2003. Effects of nutrient specifications and xylanase plus phytase supplementation of wheat-based diets on growth performance and carcass traits of broilers. Asian Australasian Journal of Animal Science, 16: 1501-1509.
Serranom M. P., Frikha M., Corchero J. and Mateos G. G. 2013. Influence of feed form and source of soybean meal on growth performance, nutrient retention, and digestive organ size of broilers. Britsih Journal of Nutrition, 92: 693-708.
Sieo C. C., Abdullah N., Tan W. S. and Ho Y. W. 2005. Influence of beta-glucanase-producing Lactobacillus strains on intestinal characteristics and feed passage rate of broiler chickens. Poultry Science, 84: 734-741.
Silva S. S. P. and Smithard R. R. 2002. Effect of enzyme supplementation of a rye-based diet on xylanase activity in the small intestine of broilers, on intestinal crypt cell proliferation and on nutrient digestibility and growth performance of the birds. British Poultry Science, 43: 274-282.
Svihus B. and Hetland H. 2001. Ileal starch digestibility in growing broiler chickens fed on wheat-based diets improved by mash feeding, dilution with cellulose or whole wheat inclusion. British Poultry Science, 42: 633-637.
Svihus B., Hetland H., Choct M. and Sundby F. 2002. Passage rate through the anterior digestive tract of broiler chickens fed on diets with ground and whole wheat. British Poultry Science, 43: 662-668.
Thomas D. V., Ravindran V. and Thomas D. G. 2005. Performance, digestive tract measurements and gut morphology in broiler chickens fed diets containing maize, wheat or sorghum. Proceedings of the Australian Poultry Science Symposium, 17: 61-62.
Viveros A., Brenes A., Pizzaro M. and Castano M. 1994. Effect of enzyme supplementation of a diet based on barley, an autoclave treatment, on apparent digestibility, growth performance and gut morphology of broilers. Animal Feed Science and Technology, 48: 237-251.
Wang Z. R., Qiao S. Y., Lu W. Q. and Li D. F. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheatbased diets. Poultry Science, 84: 875-881.
Weiser M. M. 1973. Intestinal epithelial cell surface membrane glycoprotein synthesis. I: An indicator of cellular differentiation. Journal of Biological Chemistry, 248: 2536-2541.
Wu Y. B., Ravindran V., Thomas D. G., Birtles M. J. and Hendriks W. H. 2004. The Influence of method of whole wheat inclusion and xylanase supplementation on performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. British Poultry Science, 45:385-394.
Yasar S. 2003. Performance, gut size and ileal digesta viscosity of broiler chickens fed with a whole wheat added diet and the diets with different wheat particle sizes. International Journal of Poultry Science, 2: 75-82.
Yin Y. L., Baidoo S. K., Schulze H. and Simmins P. H. 2001. Effects of supplementing diets containing hull– less barley varieties having different levels of non–starch polysaccharides with β–glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility of weaned pigs. Livestock Production Science, 71: 97-107.
Yu B., Hsu J. C. and Chiou P. W. S. 1998. Effects of β–glucanase supplementation of barley diets on growth performance of broilers. Animal Feed Science and Technology, 70: 353-361.
Zhu X. Y., Zhong T., Pandya Y. and Joerger R. D. 2002. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 68: 124-137.