Effect of Saccharomyces cerevisiae compared with monensin on oxidative stress in fattening lambs under thermal stress conditions

Document Type : Research Paper

Authors

1 MSc. Student of Animal Physiology, Department of Animal Science, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran

2 Assistant Professor, Department of Animal Science, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran

3 Graguated Ph.D in Animal Nutrition, Lorestan Agricultural Jihad Organization, Khorramabad, Iran

Abstract

Heat stress hurts the oxidative status of the body. To investigate the effect of yeast compared with monensin on oxidative stress of lambs in heat stress conditions, 15 male lambs were used in a completely randomized design in three groups with five replications. Experimental groups included group one: basal diet, group two: basal diet + five grams of yeast, and group three: basal diet + 30 mg monensin. Blood samples were collected from lambs' veins on day 56 and antioxidant enzymes and blood parameters were measured. The results revealed that supplementation of the basal diet with yeast significantly increased the level of glutathione reduction (4.16 µMol/mg plasma) and antioxidant enzymes activity superoxide dismutase (10.8 IU/mg plasma), catalase (2.15 nMol­ (per ­minute)/mg plasma), glutathione peroxidase (75.36 IU/mg plasma) and paraoxonase (42.71 IU/mg plasma). Also, the results showed that the amount of nitric oxide as an inflammation index (14.85 IU/mg plasma) and malondialdehyde as a lipid peroxidation index (33.74 IU/mg plasma) in the blood plasma of lambs were significantly decreased. Finally, the results of the current project demonstrated the diets contained yeast and the diet contained monensin compared to the control diet, were able to significantly increase thyroxin hormone (75.22 nMol/l) and liver enzyme concentration. Based on the findings of this study, adding yeast to 5 g/kg DM in the diet of lambs not only reduced the damage caused by oxidative stress but also improved the antioxidant status of lambs in heat stress conditions.

Keywords

Main Subjects


تقی‌زاده م. 1397. اثر پودر زیره، رازیانه و مخمر بر عملکرد، خصوصیات لاشه، فراسنجه‌های خون و اکوسیستم شکمبه بره‌های تغذیه ‌شده با کنسانتره بالا. پایان‌نامه دکتری، دانشگاه زابل.
یزدی م. ح.، امانلو ح.، میرزایی الموتی ح. ر.، هرکی نژاد م. ط.، نبی‌پور ا.، و محجوبی ا. 1395. اثر خورانیدن پیش­سازهای گلوکز به‌صورت سرک بر عملکرد و شاخص‌های دمایی بدنی در گوساله‌های نر هلشتاین تحت تنش حرارتی. پژوهش‌های تولیدات دامی، 13: 108-115.
AOAC. 2000. Official Methods of Analysis. 17thed. Association of Official Analytical Hemists, Gaithersburg, MD.
Abdalla E. B., El-Masry K. A., Khalil F. A., Teama F. E. and Emara S. S. 2015. Alleviation of oxidative stress by using olive pomace in crossbred (Brown Swiss X Baladi) calves under hot environmental conditions. Arab Journal of Nuclear Science and Applications, 48(4): 88-99.
Abdollahi M., Ranjbar A., Shadnia S., Nikfar S. and Rezaie A. 2004. Pesticides and oxidative stress: A review. Medical Science Monitor, 10(6): 141-147.
Adesogan A. T. 2009. Using dietary additives to manipulate rumen fermentation and improve nutrient utilization and animal performance. Proceedings: 20th Florida Ruminant Nutrition Symposium. Gainesville, pp. 13-37.
Aebi H. 1984. Catalase in vitro. Methods In Enzymology, 121-126.
Amaretti A., di Nunzio M., Pompei A., Raimondi S., Rossi M. and Bordoni A. 2013. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Applied Microbiology and Biotechnology, 97(2): 809-817.
Avallone L., Lombardi P. and D'Angelo A. 1993. Levels of CK and behaviour of its isoenzymes in water buffalo calves with natural breast breeding. Acta MedicalVeterinary, 39: 27-31.
Baumgard L. H. and Rhoads R. P. Jr. 2013. Effects of heat stress on postabsorptive metabolism and energetics. Annual Reviews of Animal Bioscience, 1(1): 311-337.
Bruno R. G. S., Rutigliano H. M., Cerri R. L., Robinson P. H. and Santos J. E. 2009. Effect of feeding Saccharomyces cerevisiae on performance of dairy cows during summer heat stress. Animal Feed Science and Technology, 150(3): 175-186.
Ding J., Zhou Z. M., Ren L. P. and Meng Q. 2008. Effect of monensin and live yeast supplementation on growth performance, nutrient digestibility, carcass characteristics and ruminal fermentation parameters in lambs fed steam-flaked corn-based diets. Asian-Australasian Journal of Animal Sciences, 21(4): 547-554.
El-Masry K. A., Abdalla E. B., Emara S. E. and Hussein A. F. 2018. Effect of dried rosemary supplement as antioxidant agent on blood biochemical changes in relation to growth performance of heat-stressed crossbred (Brown Swiss × Baladi) calves. World’s Veterinary Journal, 8(8): 95-105.
Fonty G. and Chaucheyras-Durand F. 2006. Effects and modes of action of live yeasts in the rumen. Biologia, 61(6): 741-750.
Gazi M. R., Hoshikuma A., Kanda K., Murata A. and Kato F. 2001. Detection of free radical scavenging activity in yeast culture. Bulletin of the Faculty of Agriculture-Saga University, 86: 67-74.
Gümüş R., Erol H. S., Imik H. and Halıcı M. 2017. The effects of the supplementation of lamb rations with oregano essential oil on the performance, some blood parameters and antioxidant metabolism in meat and liver tissues. Kafkas Universitesi Veteriner Fakult Dergisi, 23(3): 395-401.
Jia P., Cui K., Ma T., Wan F., Wang W., Yang D., Wang Y., Guo B., Zhao L. and Diao Q. 2018. Influence of dietary supplementation with Bacillus licheniformis and Saccharomyces cerevisiae as alternatives to monensin on growth performance, antioxidant, immunity, ruminal fermentation and microbial diversity of fattening lambs. Scientific Reports, 8(1): 16712.
Jouany J. 2001. A new look at yeast cultures as probiotics for ruminants. Feed Mix, 9(6): 17-19.
Li M., Dai F. R., Du X. P., Yang Q. D. and Chen Y. 2012. Neuroprotection by silencing iNOS expression in a 6-OHDA model of Parkinson’s disease. Journal of Molecular Neuroscience, 48(1): 225-233.
Marai I., El-Darawany A., Fadiel A. and Abdel-Hafez M. 2007. Physiological traits as affected by heat stress in sheep—A review. Small Ruminant Research, 71(1-3): 1-12.
Marklund S. and Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3): 469-474.
Martarelli D., Verdenelli M. C., Scuri S., Cocchioni M., Silvi S., Cecchini C. and Pompei P. 2011. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Current Microbiology, 62(6): 1689-1696.
Nishino T. and Ishikawa F. 1998. Pharmaceutical, cosmetic and food antioxidants containing yeasts and a method for evaluation of antioxidant activity of microorganisms. Japan Patent, 10287872: A2.
Oruç E. Ö. and Usta D. 2007. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology, 23(1): 48-55.
Rahman I., Kode A. and Biswas S. K. 2006. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols, 1(6): 3159.
Ratajczak-Wrona W., Jablonska E., Antonowicz B., Dziemianczyk D. and Grabowska S. Z. 2013. Levels of biological markers of nitric oxide in serum of patients with squamous cell carcinoma of the oral cavity. International Journal of Oral Science, 5(3): 141-145.
Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G. and Hoekstra W. G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179(4073): 588-590.
Sahoo K. C., Tamhankar A. J., Johansson E. and Lundborg C. S. 2010. Antibiotic use, resistance development and environmental factors: A qualitative study among healthcare professionals in Orissa, India. BMC Public Health, 10(1): 629.
Salami S., Guinguina A., Agboola J., Omede A., Agbonlahor E. and Tayyab U. 2016. In vivo and postmortem effects of feed antioxidants in livestock: A review of the implications on authorization of antioxidant feed additives. Animal, 10(8): 1375-1390.
Shehu B., Ayanwale B., Ayo J. and Uchendu C. 2015. Effect of Saccharomyces cerevisiae supplementation on some biomarkers of oxidative stress in weaned rabbits during the hot-dry season. World Rabbit Sciences, 24: 67-70.
Sowińska J., Tański Z., Milewski S., Ząbek K., Wójcik A., Sobiech P. and Illek J. 2016. Effect of diet supplementation with the addition of Saccharomyces cerevisiae upon stress response in slaughter lambs. Acta Veterinaria Brno, 85(2): 177-184.
Thomas L. 1998. Alanine aminotransferase (ALT), Aspartate aminotransferase (AST). In: Thomas L, editor. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft, pp. 55-65.
Truusalu K., Naaber P., Kullisaar T., Tamm H., Mikelsaar R. H., Zilmer K., Rehema A., Zilmer M. and Mikelsaar M. 2004. The influence of antibacterial and antioxidative probiotic lactobacilli on gut mucosa in a mouse model of Salmonella infection. Microbial Ecology In Health and Disease, 16(4): 180-187.
Ungerfeld R. and Melo A. F. 2019. Stress and behavioural responses to winter shearing differ between pregnant and non-pregnant ewes. Physiology and Behavior, 210(15): 112653.
Van Soest P. J., Robertson J. B. and Lewis B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10): 3583-3597.
Wang L., Wang Z., Zou H. and Peng Q. 2016. Yeast culture and vitamin E supplementation alleviates heat stress in dairy goats. Asian-Australasian Journal of Animal Sciences, 29(6): 814-822.