Heterogeneity in the effect of partial inbreeding of founder animals on birth weight and weaning weight of Baluchi lambs

Document Type : Research Paper

Authors

1 MSc Student of Animal Breeding and Genetics, Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran

2 Assistant Professor, Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran

Abstract

Uneven distribution of recessive alleles among founder animals genomes leads to the heterogeneity of inbreeding depression among their descendants. In this study, pedigree information, birth weight, and weaning weight records of 4032 Baluchi sheep collected between 1989 to 2017 at the Baluchi sheep breeding station were used to assess the heterogeneity of inbreeding depression between founders of the population. The Wright inbreeding coefficient of the inbred animals was decomposed to the partial inbreeding of the four founder animals with the greatest contribution to the inbreeding of the population. Wright inbreeding coefficients and partial inbreeding coefficients of the founder animals were included as a covariate in the animal model, in two separate analyses. The regression coefficients of birth weight and weaning weight from Wright inbreeding were estimated to be -6.4 and -61.9 g, respectively. The effect of partial inbreeding from different founders on the studied traits was heterogeneous. The regression coefficient of birth weight on partial inbreeding of founder B was -79 g, while partial inbreeding from founder D caused an increase of 121 g in this trait. In weaning weight, partial inbreeding of founder D caused an increase of 83 g in this trait, while partial inbreeding of other founders did not affect this trait. The observed heterogeneity in the effects of partial inbreeding of the different animals can confirm the hypothesis that a few recessive alleles with major effects are contributing to the inbreeding depression of these traits. According to the results of this study, the heterogeneity of the effect of inbreeding of the founder animals should be considered in the genetic evaluation model of this breed.

Keywords

Main Subjects


احمدی س.، شیخلو م.، و علیجانی ص. 1397. برآورد تاثیر همخونی و افزایش همخونی فردی بر صفات رشد گوسفند مغانی. پژوهش­های علوم دامی، 3: 81-96.
الماسی م.، رشیدی ا.، رزم کبیر ا.، و غلام بابائیان م. 1393. بررسی روند همخونی و تاثیر آن بر صفات تولیدی مرتبط با رشد در گوسفندان زندی. پژوهش در نشخوارکنندگان، 3: 109-120.
بحری بینا باج ف.، فرجی آروق ه.، رکوعی م.، جعفری م.، و شیخلو م. 1393. برآورد پسروی ناشی از همخونی بر صفات مرتبط با رشد در بره­های قره گل. پژوهش در نشخوارکنندگان، 4: 7-10.
راشدی ده صحرایی آ.، فیاضی ج.، و وطن خواه م. 1392. بررسی روند همخونی و اثر آن برعملکرد صفات رشد در گوسفند نژاد لری بختیاری. پژوهش در نشخوارکنندگان، 3: 65-87.
شیخلو م.، طهمورث پور م.، و اسلمی­نژاد ع. ا. 1390. بررسی همخونی گوسفندان بلوچی ایستگاه اصلاح نژاد عباس آباد مشهد. پژوهشهای علوم دامی ایران، 3: 453-458.
شیخلو م.، صادقی س.، و بحری بینا باج ف.  1397. تجزیه و تحلیل همخونی در گوسفند نژاد قره­گل: ضرایب همخونی جزئی، همخونی اجدادی بالو و همخونی اجدادی کالینفسکی. پژوهش در نشخوارکنندگان، 4: 31-50.
فرهنگ­فر ه.، و متقی­نیا ق. 1392. بررسی اثر پسروی ناشی از هم خونی بر صفات رشد در گوسفند بلوچی. پژوهشهای تولیدات دامی، 7: 92-105.
Baumung R., Farkas J., Boichard D., Mészáros G., Sölkne J. and Curik I. 2015. grain: A computer program to calculate ancestral and partial inbreeding coefficients using a gene dropping approach. Journal of Animal Breeding and Genetics, 132: 100-108.
Berg P., Nielsen J. and Sørensen M. K. 2006. EVA: realized and predicted optimal genetic contributions. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, 13-18 Aug. Brazil, pp. 27-29.
Casellas J., Piedrafita J., Caja G. and Varona L. 2009. Analysis of founder-specific inbreeding depression on birth weight in Ripollesa lambs. Journal of Animal Science, 87: 72-79.
Casellas J., Varona L., Ibáñez-Escriche N., Quintanilla R. and Noguera J. L. 2008. Skew distribution of founder-specific inbreeding depression effects on the longevity of Landrace sows. Genetics Resarches, 90: 499-508.
Ercanbrack S. K. and Knight A. D. 1991. Effects of Inbreeding on reproduction and wool production of Rambouillet, Targhee and Colombia. Journal of Animal Science, 69: 4734-4744.
Falconer D. S. and Mackay T. F. C. 1996. Introduction to Quantitative Genetics (4th ed). Harlow: Longman Group Ltd.
Ghavi Hossein-Zadeh N. 2012. Inbreeding effects on body weight traits of Iranian Moghani sheep. Archiv Tierzucht, 55: 171-178.
Gulisija D., Gianola D., Weigel K. A. and Toro M. A. 2006. Between-founder heterogeneity in inbreeding depression for production in Jersey cows. Livestock Science, 104: 244-253.
Köck A., Fürst-waltl B. and Baumung R. 2009. Effects of inbreeding on number of piglets born total , born alive and weaned in Austrian Large White and Landrace pigs. Archiv Tierzucht, 52: 51-64.
MacCluer J. W., Boyce A. J., Dyke B., Weitkamp L. R., Pfenning D. W.  and Parsons C. J. 1983. Inbreeding and pedigree structure in Standardbred horses. Heredity, 74: 394-399.
Man W. Y. N., Nicholas F. W. and James J. W. 2006. Variation in inbreeding depresion between ancestral line: A preliminary analysis offirse lactation somatic cellcount from Holstein Friesian in Australia. In: proceeding of 7th World Congress on Genetics Applied to Livestock Production, 19-23 Aug., France, pp. 127-130.
Meyer K. 2007. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science B, 8: 815-821.
Miglior F., Burnside E. B. and  Hohenboken W. D. 1994. Heterogenetiy among families of Holstein catle. In: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 23-26 Aug., Canada, pp. 479-482.
Nagy I., Curik I., Radnai I., Cervantes I., Gyovai P., Baumung R., Farkas J. and Szendrő Z. 2010. Genetic diversity and population structure of the synthetic pannon white rabbit revealed by pedigree analyses. Journal of Animal Science, 88: 1267-1275.
Quilicot A. M. M. 2009.  Inbreeding and its effect on fitness traits in captive populations of North Persian leopard and Mhorr gazelle. MSc dissertation. Swedish University of Agricultural Sciences.
Rodrigáñez J., Toro M. A., Rodriguez M. C. and Silió L. 1998. Effect of founder allele survival and inbreeding depression on litter size in a closed line of Large White pigs. Journal of Animal Science, 67: 573-582.
Sargolzaei M., Iwaisaki H. and Colleau J. J. 2006. CFC: a tool for monitoring genetic diversity. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, 13-18 Aug., Brazil, pp. 27-28.
SAS. 2003. SAS user’s guide, version 9.1. Cary, NC, USA: SAS Institute Inc.
Sheikhlou M. R., Badereh S. and Bahri Binabaj F. 2020. Assessment of between-founder heterogeneity in inbreeding depression for reproductive traits in Baluchi sheep. Animal Reproduction Science, 221: 1-10.
Todd E. T., Ho S. Y. W., Thoms P. C., Ang R. A, Velie B. D. and Hamilton N. A. 2018. Founder-specific inbreeding depression affects racing performance in Thoroughbred horses. Nature, 8: 1-10.
Van Wyk J. B., Fair M. D. and Cloete S. W. P. 2009. Case study: The effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. Livestock Science, 20: 218-224.
Yamashita J., Oki H., Hasegawa T., Honda T. and Nomura T. 2010. Gene dropping analysis of ancestral contributions and allele survival in Japanese Thoroughbred population. Journal of Equine Science, 21: 39-45.
Yavarifard R., Shadparvar A. and Ghavi Hosseinzadeh N. 2016. Inbreeding Effects on reproductive traits of Mehraban Sheep. Agriculturae Conspectus Scientificus, 81: 43-48.