Effect of different dietary methionine levels during grower period of Japanese quails on performance, carcass characteristics, energy and protein efficiencies, breast muscle composition, and some blood parameters

Document Type : Research Paper

Authors

1 Former Ph.D. Student, Animal Science Department, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Associate Professor, Animal Science Department, Faculty of Agriculture, Urmia University, Urmia, Iran

3 Professor, Animal Science Department, Faculty of Agriculture, Urmia University, Urmia, Iran

Abstract

This research aimed to investigate the effect of different dietary methionine levels on performance, carcass characteristics, energy and protein efficiencies, breast muscle nutrients, and some blood indices in Japanese quails during 11-24 days of age. This experiment was conducted in a completely randomized design during 14 days with 490 quail chicks in seven treatments and five replicates each (14 chicks in each replicate). The experimental diets were the NRC requirement of methionine for quail (0.5 percent), three methionine levels of 7.5, 15, and 22.5 percent lower than that of NRC requirement level (0.4625, 0.425, and 0.3875%, respectively), and three levels higher than that of NRC requirement level (0.5375, 0.575 and 0.6125%, respectively). The results showed that consumption of 0.575% methionine level caused the highest weight gain and lowest feed conversion ratio (linear and quadratic responses). The breast protein content was linearly increased by increasing the methionine level to 0.5%. Consumption of 0.6125% methionine (the highest methionine level) caused the highest relative thigh weight (linear and quadratic responses). The best energy and protein efficiencies were indicated by consumption of 0.575% methionine (linear and quadratic responses). The methionine requirement for optimal weight gain, feed conversion ratio, and energy and protein efficiencies were 0.569, 0.578, 0.54, and 0.35% according to the quadratic broken line. In total, the level of 0.569% was determined for methionine requirement based on the cumulative response of weight gain, feed conversion ratio, and energy and protein efficiencies. 

Keywords

Main Subjects


دانش مسگران م.، معینی م. س.، ترکی م.، دستار ب.، خواجه علی ف.، بوجارپور م.، و طباطبایی ف. 1378. اسیدهای آمینه در تغذیه دام. انتشارات دانشگاه فردوسی مشهد. 444 صفحه.
رحیمی طاهری م.، حسینی س. ع.، و مهدیزاده س. م. 1394. تعیین نیاز متیونین جوجه‏های گوشتی سویه آرین در دوره رشد با استفاده از صفات عملکردی. تحقیقات کاربردی در علوم دامی، 16: 77-84.
سیاحی ر.، دانشیار م. و فرهومند پ. 1398. تاثیر سطوح مختلف متیونین جیره در سنین ابتدایی بر عملکرد، خصوصیات لاشه، نسبت راندمان انرژی و پروتئین و ترکیب عضله سینه بلدرچین ژاپنی. نشریه دامپزشکی ایران، پذیرش شده برای چاپ.
وحیدی م.، مهری م.، قزاقی م،. و باقرزاده کاسمانی ف. ١٣٩٣. برآورد احتیاجات متیونین قابل هضم در بلدرچین ژاپنی از ۸ تا ۲۸ روزگی. پژوهش در تغذیه دام، 1(1): 1-6.
Abd-Elsamee M. O., Abbas H. F., Selim M. M. and Omara I. I. 2014. Effect of different levels of protein, methionine and folic acid on quail performance. Egyptian Poultry Science, 34 (IV): 979-991.
Acar N., Barbato G. F. and Patterson P. H. 2001. The effect of feeding excess methionine live performance carcass traits, and ascitic mortality. Poultry Science,80: 1585-1989.
Ahmed M. E. and Abbas T. E. 2011. Effects of dietary levels of methionine on broiler performance and carcass characteristics. International Journal of Poultry Science, 10: 147-151.
Beck C. R., Harms R. H. and Russell G. B. 1998. Is the cystine content of the diet of concern for broilers from 0 to 21 days of age? Journal of Applied Poultry Research, 7: 233-238.
Bonato M. A.,  Sakomura N. K.,  Siqueira J. C.,  Fernandes J. B. K. and Gous R. M. 2011.  Maintenance requirements for methionine and cysteine, and threonine for poultry. South African Journal of Animal Science, 41(3): 209-222.
Bouyeh M. 2013. Effects of excess dietary lysine and methionine on performance and economical efficiency of broiler chicks. Annals of Biological Research, 4: 241-246.
Coulter D. L. 1995. Carnitine deficiency in epilepsy-risk factors and treatment. Journal of Child Neurology, 10(Suppl. 2): 2532-2539.
Gorman I. and Belnave D. 1995. The effect of dietary lysine and methionine concentrations on the growth characteristics and breast meat yields of Australian broiler chickens. Australian Journal of Agricultural Research, 46(8): 1569-1577.
Haruna E. S., Musa U., Okewole P. A., Shemaki D., Lombin L. H., Molokwu J. O., Edache J. A. and Karsin P. D. 1997. Protein requirement of quail chicks in Plateau State, Nigeria. Nigeria Journal of Veterinaria, 18: 108-113.
Kaur S., Mandal A. B., Singh K. B. and Kadam M. M. 2008. The response of Japanese quails (heavy body weight line) to dietary energy levels and graded essential amino acid levels on growth performance and immuno-competence. Livestock Science, 117: 255-262.
Khaksar V., Golian A., Kermanshahi H., Movasseghiand A. R. and Jamshidi A. 2008. Effect of prebiotic fermacto on gut development and performance of broiler chickens fed diet low in digestible amino acid. Journal of Animal and Veterinary Advances, 7: 251-257.
Khosravi H., Mehri M., Bagherzadeh-Kasmani F. and Asghari-Moghadam M. 2016. Methionine requirement of growing Japanese quails. Animal Feed Science and Technology, 212: 122-128.
Mandal A. B., Praveen T. K. and Shrivastav A. K. 2006. Poultry research priorities to 2020. Proceedings of National Seminar. Izatnagar, India.
NRC (National Research Council). 1994. Nutrient requirements of poultry. National Academy Press, Washington D.C. 9th revised edition. Pp. 155.
Oda H., Okumur Y., Hitomi Y., Ozaki K., Nagaoka S. and Yoshida A. 1989. Effect of dietary methionine and polychlorinated biphenyls on cholesterol metabolism in rats fed a diet containing soy protein isolate. Journal of Nutritional Science and Vitaminology, 35: 333-348.
Olubamiwa O., Haruna E. S., Musa U., Akinade T. O., Lombin L. H. and Longe O. G. 1999. Effect of different energy levels of cocoa husk based diets on production performance of Japanese quails. Nigeria Journal of Animal Production, 26: 88-92.
Pack M. 1996. Ideal protein in broilers. Poultry International, 35(5): 54-65.
Parvin R., Mandal A. B., Singh S. M. and Thakur R. 2010. Effect of dietary level of methionine on growth performance and immune response in Japanese quails (Coturnix coturnix japonica). Journal of the Science of Food and Agriculture, 90: 471-481.
Rubin L. L., Canal C. W., Ribeiro A. L. M., Kessler A., Silva I., Trevizan L. and Krás R. 2007. Effects of methionine and arginine dietary levels on the immunity of broiler chickens submitted to immunological stimuli. Revista Brasileira de Ciência Avícola, 9: 241-247.
Schutte J. B., De Jong J., Smink W. and Pack M. 1997. Replacement value of betaine for DLmethionine in male broiler chicks. Poultry Science, 76: 321-325.
Si J., Fritts C. A., Burnham D. J. and Waldroup P. W. 2001. Relationship of dietry lysine level to the concentration of all essential amino acids in broiler diets. Poultry Science, 80: 1472-1479.
Smith T. 1990. Effect of dietary putrescine on whole body growth and polyamine metabolism. Proceeding of the Society for Experimental Biology and Medicine, 194: 332-336.
Sturkie P. D. 1986. Avian Physiology. 4th Ed., Springer-Verlag, New York.
Vesco A. P., Gasparino E., Grieser D. O., Zancanela V., Gasparin F. R. S., Constantin J. and Olivieira Neto A. R. 2014. Effects of methionine supplementation on the redox state of acute heat stress-exposed quails. Journal of Animal Science, 92: 806-815.  
Vieira S. L., Lemme A., Goldenberg D. B. and Brugalli I. 2004. Responses of growing broilers to diets with increased sulfur amino acids to lysine ratios at two dietary protein levels. Poultry Science, 83: 1307-1313.
Xu Z. R., Wang M. Q., Mao H. X., Zhan X. A. and Hu C. H. 2003. Effects of L-Carnitine on growth performance, carcass composition and metabolism of lipids in male broilers. Poultry Science, 82: 408-413.