Effect of intramammary lipopolysaccharide challenge on mRNA abundance of antioxidant genes associated with nuclear erythroid 2-related factor 2 in mammary tissue of dairy cows during change of metabolites and hormones

Document Type : Research Paper

Authors

Assistant Professor, Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran

Abstract

To study the reaction of udder mRNA abundance of genes related to nuclear erythroid 2-related factor 2 (Nrf2) to an intramammary lipopolysaccharide (LPS) challenge with changes in blood insulin and metabolites levels, 24 dairy cows were used. Treatments included insulin infusion (HypoG, n=5), insulin and glucose (EuG, n=6), β-hydroxybutyrate (HyperB, n= 5), and saline (Control, n=8) for 56 h. At 48 h of infusions, two quarters were treated with 200µg LPS, and two control quarters were treated with physiological serum. Mammary tissue biopsies were obtained before and after the LPS challenge. The mRNA abundance of the genes was measured by the qPCR approach. In the LPS quarters, the mRNA abundance of MT1A, MT2A, and MT1E increased in all treatments. The mRNA abundance of GPX3 increased in HyperB and Control. The mRNA abundance of MGST3 and SOD1 decreased in all groups lacking EuG. Decreased mRNA abundance of NQO1 observed in HypoG. In the control quarters, the mRNA abundance of MT1A and MT2A was raised in all groups. Similarly, MT1E is up-regulated in all groups except for the HypoG. The increase of mRNA abundance of GPX3 was observed in the Control and EuG groups, and UGT1A1 in EuG. LPS decreased the mRNA abundance of MGT3, NQO1, and SOD1 in HypoG. In conclusion, LPS influenced the mRNA quantity of the investigated genes in both quarters, which indicate local and systemic reactions to endotoxin. Applying appropriate management strategies will reduce oxidative stress and susceptibility to diseases and will lead to better welfare and performance of the animal. 

Keywords

Main Subjects


زرین م.، احمدپور ا.، و بروکمایر ر. 1398. اثر متقابل تزریق انسولین و القای ورم پستان با لیپوپلی‌ساکارید بر سوخت و ساز گلوکز و ترشح هورمون گلوکاگون در گاوهای شیری. تحقیقات تولیدات دامی، 2: 93-103.
زرین م.، بروکمایر ر.، و احمدپور ا. 1397. اثر دستکاری متابولیت‎ها و هورمون‎ها بر بیان mRNA ژن‎های آنتی‎اکسیدانی مرتبط با Nrf2 در بافت پستانی گاوهای شیری. تحقیقات تولیدات دامی، 3: 1-12.
Aitken S. L., Karcher E. L., Rezamand P., Gandy J. C., Vande Haar M. J., Capuco A. V. and Sordillo L. M. 2009. Evaluation of antioxidant and proinflammatory gene expression in bovine mammary tissue during the periparturient period. Journal of Dairy Science, 92: 589-598.
Akira S. and Takeda K. 2004. Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology, 4: 499-511.
Aleri J. W., Hine B. C., Pyman M. F., Mansell P. D., Wales W. J., Mallard B. and Fisher A. D. 2016. Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period. Research in Veterinary Science, 108: 8-17.
Bannerman D. D., Paape M. J., Hare W. R. and Sohn E. J. 2003: Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. Journal of Dairy Science, 86: 3128-3137.
Benov L. and Fridovich I. 1998. Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase. Journal of Biological Chemistry, 273(17): 10313-10316.
Bruckmaier R. M. and Gross J. J. 2017. Lactational challenges in transition dairy cows. Animal Production Science, 57(7): 1471-1481.
Bruckmaier R. M., Schällibaum M. and Blum J. W. 1993. Escherichia coli endotoxin-induced mastitis in dairy cows: Changes and importance of insulin-like growth factor I and oxytocin. Milchwissenschaft, 48: 374-378.
De Matteis L., Bertoni G., Lombardelli R., Wellnitz O., Van Dorland H. A., Vernay M. C. M. B., Bruckmaier R. M. and Trevisi E. 2017. Acute phase response in lactating dairy cows during hyperinsulinemic hypoglycaemic and hyperinsulinemic euglycaemic clamps and after intramammary LPS challenge. Journal of Animal Physiology and Animal Nutrition, 101: 511-520.
Drackley J. K. 1999. Biology of dairy cows during the transition period: The final frontier? Journal of Dairy Science, 82(11): 2259-2273. 
Gessner D. K., Schlegel G., Keller J., Schwarz F. J., Ringseis R. and Eder K. 2013. Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. Journal of Dairy Science, 96: 1038-1043.‌
Goff J. P. 2006. Major advances in our understanding of nutritional influences on bovine health. Journal of Dairy Science, 89(4): 1292-1301.
Gross J. J. and Bruckmaier R. M. 2019. Invited review: Metabolic challenges and adaptation during different functional stages of the mammary gland in dairy cows: Perspectives for sustainable milk production. Journal of Dairy Science, 102(4): 2828-2843.
Heiss E. H., Schachner D., Zimmermann K. and Dirsch V. M. 2013. Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biology, 1: 359-365.
Ingvartsen K. L. and Moyes K. M. 2015. Factors contributing to immunosuppression in the dairy cow during the periparturient period. Japanese Journal of Veterinary Research, 63(Suppl. 1): S15-S24.
Kensler T. W., Wakabayashi N. and Biswal S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual Review of Pharmacology and Toxicology, 47: 89-116.
Kreipe L., Vernay M. C. M. B., Oppliger A., Wellnitz O., Bruckmaier R. M. and van Dorland H. A. 2011. Induced hypoglycemia for 48 hours indicates differential glucose and insulin effects on liver metabolism in dairy cows. Journal of Dairy Science, 94: 5435-5448.
Lledı́as F., Rangel P. and Hansberg W. 1998. Oxidation of catalase by singlet oxygen. Journal of Biological Chemistry, 273(17): 10630-10637.
Matés J. M. and Sánchez-Jiménez F. 1999. "Antioxidant enzymes and their implications in pathophysiologic processes." Front Bioscience, 4: D339-D345. ‌
Motohashi H. and Yamamoto M. 2004. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine, 10(11): 549-557.‌
Oviedo-Boyso J., Valdez-Alarcón J. J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J. E., Bravo-Patiño A. and Baizabal-Aguirre V. M. 2007. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. Journal of Infection, 54: 399-409.
 
Schmitz S., Pfaffl M. W., Meyer H. H. D. and Bruckmaier R. M. 2004. Short-term changes of mRNA abundance of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domestic Animal Endocrinology, 26: 111-126.
Sordillo L. M., Contreras G. A. and Aitken S. L. 2009. Metabolic factors affecting the inflammatory response of periparturient dairy cows. Animal Health Research Reviews, 10: 53-63.
Thimmulappa R. K., Scollick C., Traore K., Yates M., Trush M. A., Liby K. T., Sporn M. B., Yamamoto M., Kensler T. W. and Biswal S. 2006. Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochemical and Biophysical Research Communications, 351: 883-889.
Trevisi E. R. M. I. N. I. O., Amadori M., Cogrossi S. I. M. O. N. E., Razzuoli E. and Bertoni G. 2012. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Research in Veterinary Science, 93: 695-704.
van Dorland H. A., Richter S., Morel I., Doherr M. G., Castro N. and Bruckmaier R. M. 2009. Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy cows. Journal of Dairy Science, 92: 1924-1940.‌
Van Knegsel A. T., Hammon H. M., Bernabucci U., Bertoni G., Bruckmaier R. M., Goselink R. M., Gross J. J., Kuhla B., Metges C. C., Parmentier H. K. and Trevisi E. 2014. Metabolic adaptation during early lactation: key to cow health, longevity and a sustainable dairy production chain. CAB Reviews, 9(002): 1-15.
Vernay M. C. M. B., Wellnitz O., Kreipe L., van Dorland H. A. and Bruckmaier R. M. 2012. Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows. Journal of Dairy Science, 95: 2540-2549.‌
Waldron M. R., Kulick A. E., Bell A. W. and Overton T. R. 2006. Acute experimental mastitis is not causal toward the development of energy-related metabolic disorders in early postpartum dairy cows. Journal of Dairy Science, 89: 596-610.
Watson A. M., Warren G., Howard G., Shedlofsky S. I. and Blouin R. A. 1999. Activities of conjugating and antioxidant enzymes following endotoxin exposure. Journal of Biochemical and Molecular Toxicology, 13: 63-69.
Wellnitz O. and Bruckmaier R. M. 2012. The innate immune response of the bovine mammary gland to bacterial infection. The Veterinary Journal, 192: 148-152.
Zarrin M., Christensen R., DoostMohammadi S. K., Ahmadpour A. and Ahmadpour A. 2019a. The inflammatory response in cellular level changes during the transition period in dromedary camel. Journal of Animal Science, 97(Suppl. 3): 369.
Zarrin M., Christensen R., DoostMohammadi S. K., Ahmadpour A. and Ahmadpour A., 2019b. Hepatic reducing factors expression changes in dromedary camel during late gestation and early lactation. Journal of Animal Science, 97(Suppl. 3): 366-367.
Zarrin M., Christensen R., DoostMohammadi S. K., Ahmadpour A. and Ahmadpour A. 2019c. Alteration of mRNA abundance of the oxidizing factors-related genes during the transition period in dromedary camel. Journal of Animal Science, 97(Suppl. 3): 366.
Zarrin M., De Matteis L., Vernay M. C. M. B., Wellnitz O., van Dorland H. A. and Bruckmaier R. M. 2013. Long-term elevation of β-hydroxybutyrate in dairy cows through infusion: Effects on feed intake, milk production, and metabolism. Journal of Dairy Science, 96: 2960-2972.‌
Zarrin M., Grossen-Rösti L., Bruckmaier R. M. and Gross J. J. 2017. Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition. Journal of Dairy Science, 100: 2323-2333.
Zarrin M., Wellnitz O., van Dorland H. A. and Bruckmaier R. M. 2014a. Induced hyperketonemia affects the mammary immune response during lipopolysaccharide challenge in dairy cows. Journal of Dairy Science, 97: 330-339.‌
Zarrin M., Wellnitz O., van Dorland H. A., Gross J. J. and Bruckmaier R. M. 2014b. Hyperketonemia during lipopolysaccharide-induced mastitis affects systemic and local intramammary metabolism in dairy cows. Journal of Dairy Science, 97(6): 3531-3541.
Zarrin M., Wellnitz O., van Dorland H. A. and Bruckmaier R. M. 2019d. Hepatic mRNA abundance of genes related to nuclear erythroid 2-related factor 2 changes in response to 48 h manipulated plasma metabolites and insulin in dairy cows: Metabolites and insulin infusion effects in cows. Livestock Science, 227: 189-194.