Effect of different levels of copper as a slow-release bolus on milk yield and composition and some blood metabolites of Lori Bakhtiari ewes

Document Type : Research Paper

Authors

1 MSc Student, Animal Science Department, Faculty of Agriculture, Lorestan University, Khorramabad, Islamic Republic of Iran

2 Assistant Professor, Animal Science Department, Faculty of Agriculture, Lorestan University, Khorramabad, Islamic Republic of Iran

3 Professor, Animal Science Department, Faculty of Agriculture, Lorestan University, Khorramabad, Islamic Republic of Iran

Abstract

To investigate the milk yield and composition and some blood parameters of pregnant ewes receiving a slow-release bolus of copper, 120 Lori-Bakhtiari pregnant ewes (in their third and fourth parities with a body condition score of 3 to 3.5) were divided into three groups of 40 heads each in a completely randomized design. Treatments included: 1) control ewes (5.79 mg copper per kg of dry matter); 2) ewes receiving two milligrams of copper per day (one bolus), and 3) ewes receiving four milligrams of copper per day (tow boluses). On the first day, days 10 and 60 postpartum, blood samples were taken from the ewes. Serum copper concentration, serum ceruloplasmin concentration, and white blood cell count were significantly higher in ewes receiving one or two copper bolus than in the control group (P<0.05). Milk production, protein content, and percentage of non-fat milk solids were significantly higher in ewes receiving two copper bolus than in other treatments (P<0.05). Also, ewes receiving one copper bolus had significantly higher milk production, protein content, and percentage of non-fat milk solids than the control treatment (P<0.05). The percentage of milk fat in the control group was higher than ewes receiving two slow-release copper bolus (P<0.05). Milk copper concentration in ewes receiving one or two copper boluses was higher than in the control treatment (P<0.05). In general, both levels of copper improved milk production and some blood parameters, but the use of two boluses is recommended for higher milk production. 

Keywords

Main Subjects


بهاری ع. ا.، علی عربی ح.، طباطبایی م. م.، دزفولیان ا ح.، رشیدی ج.، زمانی پ.، علیپور د.، صادقی نسب ع.، بختیاری ز.، و فدایی فر ا. 1391 . اثر سطح و نوع مکمل مس بر فراسنجه‌های هماتولوژی، سرولوپلاسمین و غلظت پلاسمایی مس، روی و آهن در بره های نر مهربان. علوم دامی ایران، 43(2): 161-171.
چراغی مشعوف ل.، علی عربی ح.، فرح‌آور ع.، زمانی پ.، و علیمحمدی ر. 1396 . تأثیر افزودن روی و مس به جیرۀ میش‌های آبستن در اواخر دورۀ آبستنی بر پروفیل مواد کانی خون و شیر، عملکرد رشد بره‌ها و برخی فراسنجه‌های خونی. علوم دامی ایران، 49(2): 267-284.
رسولی ا.، شهریاری ا.، نوری م.، و حاجی حاجیکلایی م. ر. 1390. مقایسه تأثیر داروهای خوراکی و تزریقی مس بر وضعیت سرم گوسفندان. تحقیقات دامپزشکی، 66(4): 343-378.
عبداللهی ا.، کهرام ح.، شهیر م. ح.، و نعمتی م. ح. 1393 . تأثیر بلوس شکمبه‌ای مواد معدنی آهسته رهش روی وضعیت مواد معدنی، تعداد فولیکول‌های تخمدان و نتایج آبستنی در میش‌های افشاری همزمان‌ سازی شده. تحقیقات دامپزشکی ایران، 16(1): 63-68.
فگاری نوبیجاری ح.، امانلو ح.، و دهقان بنادکی م. 1391 . استفاده از مکمل های مس برای بهبود عملکرد رشد و سلامت پا در گاوهای جوان هلشتاین. مجله علوم و فناوری کشاورزی، 1: 77-86.
هژبری ف.، دارابی م.، و معینی م. م. 1396 . بررسی اثر مکملهای مختلف مس بر عملکرد، برخی فراسنجه های خون و پاسخ ایمنی همورال در بره‌های نر سنجابی. پژوهش در نشخوارکنندگان، 1(6): 101-116.
Abdelrahman M. M., Aljumaah R. S. and Khan R. U. 2017. Effects of prepartum sustained-release trace elements ruminal bolus on performance, colustrum composition and blood metabolites in Najdi ewes. Environmental Science and Pollution Research, 24: 9675-9680.
Ballantine H., Socha M., Tomlinson D. A. D., Johnson A., Fielding A., Shearer J. and Van Amstel S. 2002. Effects of feeding complexed zinc, manganese, copper, and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction, and lactation performance. The Professional Animal Scientist, 18: 211-218.
Bastian T. W., Prohaska J. R., Georgieff M. K. and Anderson G. W. 2010. Perinatal iron and copper deficiencies alter neonatal rat circulating and brain thyroid hormone concentrations. Endocrinology, 151: 4055-4065.
Campbell M., Miller J. and Schrick F. 1999. Effect of additional cobalt, copper, manganese, and zinc on reproduction and milk yield of lactating dairy cows receiving bovine somatotropin. Journal of Dairy Science, 82: 1019-1025.
Cheng J., Ma H., Fan C., Zhang Z., Jia Z., Zhu X. and Wang L. 2011. Effects of different copper sources and levels on plasma superoxide dismutase, lipid peroxidation, and copper status of lambs. Biological Trace Element Research, 144: 570-579.
Datta C., Mondal M. and Biswas P. 2007. Influence of dietary inorganic and organic form of copper salt on performance, plasma lipids and nutrient utilization of Black Bengal (Capra hircus) goat kids. Animal Feed Science and Technology, 135: 191-209.
DeFrain J., Socha M., Tomlinson D. and Kluth D. 2009. Effect of complexed trace minerals on the performance of lactating dairy cows on a commercial dairy. The Professional Animal Scientist, 25: 709-715.
Dezfoulian A. H., Aliarabi H., Tabatabaei M. M., Zamani P., Alipour D., Bahari A. and Fadayifar A. 2012. Influence of different levels and sources of copper supplementation on performance, some blood parameters, nutrient digestibility and mineral balance in lambs. Livestock Science, 147: 9-19.
Dietz A. M. 2015. Effects of dietary Cu, Zn and Mn on bovine neutrophil function. Thesis for the Degree Master of Science in the Graduate School of the Ohio State University.
Eckert G., Greene L., Carstens G. and Ramsey W. 1999. Copper status of ewes fed increasing amounts of copper from copper sulfate or copper proteinate. Journal of Animal Science, 77: 244-249.
Engle T. and Spears J. 2000. Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers. Journal of Animal Science, 78: 2446-2451.
Ergaz Z., Shoshani-Dror D., Guillemin C., Neeman-azulay M., Fudim L., Weksler-Zangen S., Stodgell C. J., Miller R. K. and Ornoy A. 2012. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model. Toxicology and Applied Pharmacology, 265: 209-220.
Freestone D., Cater M. A., Ackland M. L., Paterson D., Howard D. L., de Jonge M. D. and Michalczyk A. 2014. Copper and lactational hormones influence the CTR1 copper transporter in PMC42-LA mammary epithelial cell culture models. The Journal of Nutritional Biochemistry, 25: 377-387.
Griffiths L., Loeffler S., Socha M., Tomlinson D. and Johnson A. 2007. Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology, 137: 69-83.
Haenlein G. and Anke M. 2011. Mineral and trace element research in goats: A review. Small Ruminant Research, 95: 2-19.
Kachuee R., Moeini M. and Souri M. 2014. Effects of organic and inorganic selenium supplementation during late pregnancy on colostrum and serum Se status, performance and passive immunity in Merghoz goats. Animal Production Science, 54: 1016-1022.
Kirchgessner M. and Weigand E. 1982. Optimal zinc requirement of lactating dairy cows based on various dose-response relationships. Archiv fur Tierernahrung, 32: 569-578.
Machado V., Bicalho M., Pereira R., Caixeta L., Knauer W., Oikonomou G., Gilbert R. and Bicalho R. 2013. Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. The Veterinary Journal, 197: 451-456.
Mahboub H. D., Ramadan S. G., Helal M. A. and Aziz E. A. 2013. Effect of maternal feeding in late pregnancy on behaviour and performance of Egyptian goat and sheep and their offspring. Global Veterinaria, 11: 168-176.
Michalczyk A. A., Rieger J., Allen K. J., Mercer J. F. and Ackland M. L. 2000. Defective localization of the Wilson disease protein (ATP7B) in the mammary gland of the toxic milk mouse and the effects of copper supplementation. Biochemical Journal, 352: 565-571.
Monda M. and Biswas P. 2007. Different sources and levels of copper supplementation on performance and nutrient utilization of castrated black Bengal (Capra hircus) kids diet. Asian-Australasian Journal of Animal Sciences, 20: 1067-1075.
Naji H. A. 2017. The effect of zinc and copper deficiency on hematological parameters, oxidative stress and antioxidants levels in the sheep. Basrah Journal of Veterinary Research, 16: 344-355.
Nemec L., Richards J., Atwell C., Diaz D., Zanton G. and Gressley T. 2012. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. Journal of Dairy Science, 95: 4568-4577.
NRC. 2005. Mineral tolerance of animals. National Academies Press.
NRC. 2007. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. National Academy of Science, Washintgton, DC 347p.
Pechova A., Misurova L., Pavlata L. and Dvorak R. 2009. The influence of supplementation of different forms of zinc in goats on the zinc concentration in blood plasma and milk. Biological Trace Element Research, 132: 112-121.
Peniche G. I., Sarmiento F. L. and Santos R. R. 2015. Estimation of milk production in hair ewes by two methods of measurement. Revista MVZ Córdoba, 20: 4629-4635.
Pordel O., Khazali H., Rokni H. and Hosseini A. 2018. Administration of Different Levels of Arginine and Lysine Coupled with Copper for Change the Copper Concentration of Milk in the Lactating Zandi's Ew'es. Iranian Journal of Applied Animal Science, 8: 241-246.
Pyatskowit J. W. and Prohaska J. R. 2008. Copper deficient rats and mice both develop anemia but only rats have lower plasma and brain iron levels. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 147: 316-323.
Rabiansky P., McDowell L., Velasquez-Pereira J., Wilkinson N., Percival S., Martin F., Bates D., Johnson A., Batra T. and Salgado-Madriz E. 1999. Evaluating copper lysine and copper sulfate sources for heifers. Journal of Dairy Science, 82: 2642-2650.
Radostits O. M., Gay C., Hinchcliff K. W. and Constable P. D. 2007. A textbook of the diseases of cattle, horses, sheep, pigs and goats. Veterinary Medicine, 10: 2045-2050.
Senthilkumar P., Nagalakshmi D., Reddy Y. R. and Sudhakar K. 2009. Effect of different level and source of copper supplementation on immune response and copper dependent enzyme activity in lambs. Tropical Animal Health and Production, 41: 645-653.
Siciliano-Jones J., Socha M., Tomlinson D. and DeFrain J. 2008. Effect of trace mineral source on lactation performance, claw integrity, and fertility of dairy cattle. Journal of Dairy Science, 91: 1985-1995.
Suttle N. F. 2010. Mineral nutrition of livestock. Cabi.
Toni F., Grigoletto L., Rapp C., Socha M. and Tomlinson D. 2007. Effect of replacing dietary inorganic forms of zinc, manganese, and copper with complexed sources on lactation and reproductive performance of dairy cows. The Professional Animal Scientist, 23: 409-416.
Tygesen M. P., Nielsen M. O., Nørgaard P., Ranvig H., Harrison A. P. and Tauson A-H. 2008. Late gestational nutrient restriction: Effects on ewes' metabolic and homeorhetic adaptation, consequences for lamb birth weight and lactation performance. Archives of Animal Nutrition, 62: 44-59.
Wang F., Li S., Xin J., Wang Y., Cao Z., Guo F. and Wang Y. 2012. Effects of methionine hydroxy copper supplementation on lactation performance, nutrient digestibility, and blood biochemical parameters in lactating cows. Journal of Dairy Science, 95: 5813-5820.
Yang W., Wang J., Liu  L., Zhu X., Wang X., Liu Z., Wang Z., Yang L. and Liu G. 2011. Effect of high dietary copper on somatostatin and growth hormone-releasing hormone levels in the hypothalami of growing pigs. Biological Trace Element Research, 143: 893-900.
Zhang W., Wang R., Kleemann D. O., Lu D., Zhu X., Zhang C. and Jia Z. 2008. Effects of dietary copper on nutrient digestibility, growth performance and plasma copper status in cashmere goats. Small Ruminant Research, 74: 188-193.