Asadollahpour Nanaei, H., Kharrati-Koopaee, H., & Esmailizadeh A. (2022). Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens. BMC Genomics, 23(1): 224. doi: 10.1186/s12864-022-08434-7
Azizpour, N., Khaltabadi Farahani, A. H., Moradi, M., & Mohammadi, H. (2020). Genome-wide association study based on gene-set enrichment analysis associated with milk yield in Holstein cattle. Journal of Animal Science Research, 30(1), 79-92. doi: 10.22034/AS.2021.46637.1621 [In Persian]
Bonhomme, M., Chevalet, C., Servin, B., Boitard, S., Abdallah, J., Blott, S., & SanCristobal M. (2010). Detecting selection in population trees: the Lewontin and Krakauer test extended. Genetics, 186(1), 241-262. doi: 10.1534/genetics.104.117275
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-Generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, 7. doi: 10.1186/s13742-015-0047-8
Chen, Q., Wang, Z., Sun, J., Huang, Y., Hanif, Q., Liao, Y., & Lei, C. (2020). Identification of genomic characteristics and selective signals in a Du'an goat flock. Animals (Basel), 10(6), 994. doi: 10.3390/ani10060994
El-Halawany, N., Zhou, X., Al-Tohamy, A. F., El-Sayd, Y. A., Shawky, A. E., Michal, J. J., & Jiang, Z. (2016). Genome-wide screening of candidate genes for improving fertility in Egyptian native Rahmani sheep. Animal Genetics, 47(4), 513. doi: 10.1111/age.12437
Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M., & Servin, B. (2013). Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics, 193(3), 929-941. doi: 10.1534/genetics.112.147231.
Giacopelli, F., Cappato, S., Tonachini, L., Mura, M., Di Lascio, S., Fornasari, D., Ravazzolo, R., & Bocciardi, R. (2013). Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva. Orphanet Journal of Rare Diseases, 8, 145. doi: 10.1186/1750-1172-8-145
Gutiérrez-Gil, B., Pérez, J., Alvarez, L., Martínez-Valladares, M., de la Fuente, L. F., Bayón, Y., Meana, A., San Primitivo, F., Rojo-Vázquez, F. A., & Arranz, J. J. (2009). Quantitative trait loci for resistance to trichostrongylid infection in Spanish Churra sheep. Genetics Selection Evolution, 41(1), 46. doi: 10.1186/1297-9686-41-46
Han, B., Wang, H., Zhang, J., & Tian, J. (2020). FNDC3B is associated with ER stress and poor prognosis in cervical cancer. Oncology Letters, 19(1), 406-414. doi: 10.3892/ol.2019.11098
Isabelle, C. M., & Picard, B. (2016). Expression marker-based strategy to improve beef quality. The Scientific World Journal, 3, 1-11. doi: 10.1155/2016/2185323
Khalifa, E. I., Ahmed, M. E., Hafez, Y. H., El-Zolaky, O. A., Bahera, K. M., & Abido, A. A. (2013). Age at puberty and fertility of Rahmani sheep fed on biological inoculated corn silage. Annals of Agricultural Sciences, 58(2), 163-172. doi.org/10.1016/j.aoas.2013.07.003
Khaltabadi Farahani, A. H., Mohammadi, H., & Moradi, H. (2020). Gene set enrichment analysis using genome-wide association study to identify genes and pathways associated with litter size in various sheep breeds. Animal Production, 22(3), 325-335. doi:10.22059/jap.2020.292715.623468 [In Persian]
Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., McEwan, J., & Dalrymple, B. (2012). International Sheep Genomics Consortium Members. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10(2), e1001258. doi: 10.1371/journal.pbio.1001258
Leroy, G., Baumung, R., Boettcher, P., Besbes, B., From, T., & Hoffmann, I. (2018). Animal genetic resources diversity and ecosystem services. Global Food Security, 17, 84-91. doi: 10.1002/ecy.3745
McBride, D., Carré, W., Sontakke, S. D., Hogg, C. O., & Law, A. (2012). Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction, 144, 221-233. doi: 10.1530/REP-12-0025
Mohammadi, H., Khaltabadi Farahani, H. K., Moradi, M. H., Mastrangelo, S., Di Gerlando, R., Sardina, M. T., Scatassa, M. L., Portolano, B., & Tolone, M. (2022). Weighted single-step genome-wide association study uncovers known and novel candidate genomic regions for milk production traits and somatic cell score in Valle del Belice dairy sheep. Animals (Basel), 12(9), 1155. doi: 10.3390/ani12091155
Patiabadi, Z., Razmkabir, M., Esmailizadeh Koshkoiyeh, A., Moradi, M. H., & Rashidi, A. (2023). Genomic scanning of selection signature in Iranian skin and wool sheep using FST unbiased estimator and hapFLK methods. Animal Production Research, 12(2), 85-103. doi: 10.22124/ar.2023.22903.1721 [In Persian]
Rostamzadeh Mahdabi, E., Esmailizadeh, A., Ayatollahi Mehrgardi, A., & Asadi Fozi, M. (2021). A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genetics Selection Evolution, 53(1), 72. doi: 10.1186/s12711-021-00664-9
Sabeti, P. C., Schaffner, S. F., Fry, B., Lohmueller, J., Varilly, P., Shamovsky, O., & Lander, E. (2006). Positive natural selection in the human lineage. Science, 312(5780), 1614-1620. doi: 10.1126/science.1124309
Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., & Singh, R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. doi: 10.1016/j.ygeno.2021.02.009
Shimizu, T., Jayawardana, B. C., Nishimoto, H., Kaneko, E., Tetsuka, M., & Miyamoto, A. (2006). Involvement of the bone morphogenetic protein/receptor system during follicle development in the bovine ovary: hormonal regulation of the expression of bone morphogenetic protein 7 (BMP-7) and its receptors (ACTRI and ALK-2). Molecular and Cellular Endocrinology, 249, 78-83. doi: 10.1016/j.mce.2006.01.015
Tenghe, A. M. M., Bouwman, A. C., Berglund, B., Strandberg, E., de Koning, D. J., & Veerkamp, R. F. (2016). Genome wide association study for endocrine fertility traits using single nucleotide polymorphism arrays and sequence variants in dairy cattle. Journal of Dairy Science, 99(7), 5470-5485. doi: 10.3168/jds.2015-10533
Wang, X., Liu, J., Zhou, G., Guo, J., Yan, H., Niu, Y., Li, Y., Yuan, C., Geng, R., Lan, X., An, X., Tian, X., Zhou, H., Song, J., Jiang, Y., & Chen, Y. (2016). Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Scientific Reports, 6, 38932. doi: 10.1038/srep38932
Waineina, R. W., Okeno, T. O., Ilatsia, E. D., & Ngeno, K. (2022). Selection signature analyses revealed genes associated with adaptation, production, and reproduction in selected goat breeds in Kenya. Frontiers in Genetics, 13, 858923. doi: 10.3389/fgene.2022.858923
Wang, P., Li, X., Zhu, Y., Wei, J., Zhang, C., Kong, Q., Nie, X., Zhang, Q., & Wang, Z. (2022). Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows. Frontiers in Veterinary Science, 9, 932034. doi: 10.3389/fvets.2022.932034
Yurchenko, A. A., Daetwyler, H. D., Yudin, N., Schnabel, R. D., Vander Jagt, C. J., Soloshenko, V., Lhasaranov, B., Popov, R., Taylor, J. F., & Larkin, D. M. (2018). Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Scientific Reports, 8(1), 12984. doi: 10.1038/s41598-018-31304-w
Zhang, Y. E. (2017). Non-Smad signaling pathways of the TGF- family. Cold Spring Harbor Perspectives in Biology, 9, 56-71. doi: 10.1101/cshperspect.a02212
Zhang, Z., Sui, Z., Zhang, J., Li, Q., Zhang, Y., Wang, C., Li, X., & Xing, F. (2022). Identification of signatures of selection for litter size and pubertal initiation in two sheep populations. Animals (Basel), 12(19), 2520. doi: 10.3390/ani12192520
Zhao, F., Deng, T., Shi, L., Wang, W., Zhang, Q., Du, L., & Wang, L. (2020). Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types. Animals (Basel), 10(5), 773. doi: 10.3390/ani10050773