Abareghi, F., Mohammadabadi, M., Ayatollahi Mehrjardi, A., Khezri, A., Shaban Jorjandy, D., Askari-Hesni, M., & Salemi, S. (2023). Examining of IGF2 gene expression in muscular and back fat tissues of Kermani sheep. Breeding and Improvement of Livestock, 3(2), 5-17. [In Persian]
Ahmad, S. S., Chun, H. J., Ahmad, K., Shaikh, S., Lim, J. H., Ali, S., & Choi, I. (2023). The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production.
Journal of Animal Science and Technology,
65(1), 16-31. doi:
10.5187/jast.2022.e114
Beletskiy, A., Chesnokova, E., & Bal, N. (2021). Insulin-like growth factor 2 as a possible neuroprotective agent and memory enhancer—its comparative expression, processing and signaling in mammalian CNS.
International Journal of Molecular Sciences,
22(4), 1849.
doi: 10.3390/ijms22041849
Coelho, M. C., Malcata, F. X., & Silva, C. C. (2022). Lactic acid bacteria in raw-milk cheeses: From starter cultures to probiotic functions.
Foods,
11(15), 2276.
doi: 10.3390/foods11152276
Coyne, G. S., Kenny, D. A., & Waters, S. M. (2011). Effect of dietary n-3 polyunsaturated fatty acid supplementation on bovine uterine endometrial and hepatic gene expression of the insulin-like growth factor system. Theriogenology, 75(3), 500-512. doi: 10.1016/j.theriogenology.2010.09.018
De Souza, J., & Lock, A. L. (2018). Long-term palmitic acid supplementation interacts with parity in lactating dairy cows: Production responses, nutrient digestibility, and energy partitioning.
Journal of Dairy Science, 101(4), 3044-3056.
doi: 10.3168/jds.2017-13946
Deng, K., Li, X., Liu, Z., Su, Y., Sun, X., Wei, W., & Wang, F. (2024). IGF2BP2 regulates the proliferation and migration of endometrial stromal cells through the PI3K/AKT/mTOR signaling pathway in Hu sheep.
Journal of Animal Science,
102, skae129.
doi: 10.1093/jas/skae129
Gardner, S., Alzhanov, D., Knollman, P., Kuninger, D., & Rotwein, P. (2011). TGF-β inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II.
Molecular Endocrinology,
25(1), 128-137. doi:
10.1210/me.2010-0292
Hao, K. L., Zhai, Q. C., Gu, Y., Chen, Y. Q., Wang, Y. N., Liu, R., & Hu, S. J. (2023). Disturbance of suprachiasmatic nucleus function improves cardiac repair after myocardial infarction by IGF2-mediated macrophage transition. Acta Pharmacologica Sinica, 44(8), 1612-1624. doi: 10.1038/s41401-023-01059-w
Jafarpour, N., Khorvash, M., Rahmani, H.R., Pezeshki, A., & Hosseini Ghaffari, M. (2015). Dose–responses of zinc–methionine supplements on growth, blood metabolites and gastrointestinal development in sheep. Journal of Animal Physiology and Animal Nutrition, 99, 668-675. doi: 10.1111/jpn.12286
Kent, L. N., Ohboshi, S., & Soares, M. J. (2012). Akt1 and insulin-like growth factor 2 (Igf2) regulate placentation and fetal/postnatal development. The International journal of Developmental Biology, 56(4), 255. doi: 10.1387/ijdb.113407lk
Mahmoudi, T., Nouri, S., Zarei, F., Najafabadi, Z. N., Sanei, M., Sayedsalehi, S., & Zali, M. R. (2023). Insulin-like growth factor binding protein 3 promoter variant (rs2854744) is associated with nonalcoholic fatty liver disease. Archives of Endocrinology and Metabolism, 68, e230017. doi: 10.20945/2359-4292-2023-0017
Markljung, E., Jiang, L., Jaffe, J. D., Mikkelsen, T. S., Wallerman, O., Larhammar, M., & Andersson, L. (2009). ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth.
PLoS Biology,
7(12), e1000256
. doi: 10.1371/journal.pbio.1000256
McCarthy, M. M., Mann, S., Nydam, D. V., Overton, T. R., & McArt, J. A. A. (2015). Concentrations of nonesterified fatty acids and β-hydroxybutyrate in dairy cows are not well correlated during the transition period.
Journal of Dairy Science,
98(9), 6284-6290.
doi: 10.3168/jds.2015-9446
Ndandala, C. B., Zhou, Q., Li, Z., Guo, Y., Li, G., & Chen, H. (2024). Identification of Insulin-like Growth Factor (IGF) family genes in the Golden Pompano, Trachinotus ovatus: Molecular cloning, characterization and gene expression. International Journal of Molecular Sciences, 25(5), 2499. doi: 10.3390/ijms25052499
Nazari, M., Salari, S., & Ghorbani, M. R. (2017). Effects of zinc supplementation and betaine substitution to methionine on hepatic betaine - homocysteine methyltransferase and lipogenic genes expression in laying hens under heat stress. Agricultural Biotechnology Journal, 9(1), 95-110. [In Persian]
Nazari, M., Sallari, S., & Ghorbani, M. R. (2020). Effect of Zinc supplementation and Betaine substitution to methionine on performance and blood parameters of laying hens under heat stress. Veterinary Research & Biological Products, 33(1), 61-70. [In Persian]
Oh, Y. S., & Choi, C. B. (2004). Effects of zinc on lipogenesis of bovine intramuscular adipocytes. Asian-Australasian Journal of Animal Sciences, 17(10), 1378-1382. doi: 10.5713/ajas.2004.1378
Palmquist, D. L., & Jenkins, T. C. (2017). A 100-Year Review: Fat feeding of dairy cows. Journal of Dairy Science, 100(12), 10061-10077. doi: 10.3168/jds.2017-12924
Pavkovych, S., Vovk, S., & Kruzhel, B. (2015). Protected lipids and fatty acids in cattle feed rations. Acta Scientiarum Polonorum. Zootechnica, 14(3), 3-4.
Pewan, S. B., Otto, J. R., Huerlimann, R., Budd, A. M., Mwangi, F. W., Edmunds, R. C., & Malau-Aduli, A. E. O. (2020). Genetics of omega-3 long-chain polyunsaturated fatty acid metabolism and meat eating quality in Tattykeel Australian White lambs.
Genes,
11(5),
587.
doi: 10.3390/genes11050587
Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36-e36. doi: 10.1093/nar/30.9.e36
Salabi, F.,
Boujarpoor, M.,
Fayazi, J.,
Salari, S., &
Nazari, M. (2011). Effects of different levels of zinc on the performance and carcass characteristics of broiler reared under heat stress condition.
Journal of Animal and Veterinary Advances,
10(10), 1332-1335. doi:
10.3923/javaa.2011.1332.1335
Salabi, F., Nazari, M., Chen, Q., Nimal, J., Tong, J., & Cao, W. (2014). Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro.
Journal of Biotechnology,
192, 268-280.
doi: 10.1016/j.jbiotec.2014.10.038
Sloup, V., Jankovská, I., Nechybová, S., Peřinková, P., & Langrová, I. (2017). Zinc in the animal organism: a review. Scientia Agriculturae Bohemica, 48(1), 13-21. doi: 10.1515/sab-2017-0003
Sobeková, A., Piešová, E., Maková, Z., Szabóová, R., Sopková, D., Andrejčáková, Z., & Faixová, Z. (2023). Duration of the flaxseed supplementation affects antioxidant defense mechanisms and the oxidative stress of fattening pigs. Veterinary Sciences, 10(9), 586. doi: 10.3390/vetsci10090586.
Spears, J. W. (1989). Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers. Journal of Animal Science, 67(3), 835-843. doi: 10.2527/jas1989.673835x
Vierboom, M. M., Engle, T. E., & Kimberling, C. V. (2003). Effects of gestational status on apparent absorption and retention of copper and zinc in mature Angus cows and Suffolk ewes. Asian-Australasian Journal of Animal Sciences, 16(4), 515-518. doi: 10.5713/ajas.2003.515
Wang, X., Lin, L., Lan, B., Wang, Y., Du, L., Chen, X., & Wang, Y. (2020). IGF2R-initiated proton rechanneling dictates an anti-inflammatory property in macrophages. Science Advances, 6(48), eabb7389. doi: 10.1126/sciadv.abb7389
Wei, C., Wu, M., Wang, C., Liu, R., Zhao, H., Yang, L., Liu, J., Wang, Y., Zhang, S., Yuan, Z., Liu, Z., Hu, S., Chu, M., Wang, X., & Du, L. (2018). Long noncoding RNA Lnc-SEMT modulates IGF2 expression by sponging miR-125b to promote sheep muscle development and growth. Cellular Physiology and Biochemistry, 49(2), 447-462. doi: 10.1159/000492979
White, V., Jawerbaum, A., Mazzucco, M. B., Gauster, M., Desoye, G., & Hiden, U. (2018). IGF2 stimulates fetal growth in a sex-and organ-dependent manner. Pediatric Research, 83(1), 183-189. doi: 10.1038/pr.2017.221
Wilson, E. M., & Rotwein, P. (2006). Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II. Journal of Biological Chemistry, 281, 29962-29971. doi: 10.1074/jbc.M605445200
Wynn, P. C., & Sheehy, P. A. (2012). Minor proteins, including growth factors. In Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th Edition (pp. 317-335). Boston, MA: Springer US. doi: 10.1007/978-1-4614-4714-6_11
Yang, H., Zhang, F., Sun, S., Li, H., Li, L., Xu, H., & Lyu, F. (2023). Brushite-coated Mg–Nd–Zn–Zr alloy promotes the osteogenesis of vertebral laminae through IGF2/PI3K/AKT signaling pathway. Biomaterials Advances, 152, 213505. doi: 10.1016/j.bioadv.2023.213505
Yi, T., Wang, T., Shi, Y., Peng, X., Tang, S., Zhong, L., & Li, Q. (2020). Long noncoding RNA 91H overexpression contributes to the growth and metastasis of HCC by epigenetically positively regulating IGF2 expression. Liver International, 40(2), 456-467. doi: 10.1111/liv.14300
Younis, S., Schönke, M., Massart, J., Hjortebjerg, R., Sundström, E., Gustafson, U., & Andersson, L. (2018). The ZBED6–IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proceedings of the National Academy of Sciences, 115(9), E2048-E2057. doi: 10.1073/pnas.1719278115.
Yu, Z. P., Le, G. W., & Shi, Y. H. (2005). Effect of zinc sulphate and zinc methionine on growth, plasma growth hormone concentration, growth hormone receptor and insulin-like growth factor-I gene expression in mice. Clinical and Experimental Pharmacology and Physiology, 32(4), 273-278. doi: 10.1111/j.1440-1681.2005.04183.x