Study of genetic similarities and phylogenetic analysis of Iranian dromedary and bactrian camels with seven major species of the Camelidae family based on mitochondrial genome

Document Type : Research Paper

Authors

1 Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

2 AGBU, a joint venture of NSW Department of Primary Industries and University of New England, University of New England, Armidale, NSW 2351, Australia

3 Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Guilan, Iran

Abstract

Introduction: Mitochondrial DNA (mtDNA), also referred to as the mitogenome, has emerged as a pivotal tool in evolutionary biology and phylogenetics due to its maternal inheritance, high mutation rate, and lack of recombination. These characteristics make it an ideal molecular marker for tracing lineage divergences and understanding genetic relationships among species. This study leverages complete mitochondrial genome sequences, protein-coding genes (PCG), and single-nucleotide polymorphism (SNP) data to elucidate the genetic similarities and phylogenetic relationships between Iranian dromedary (Camelus dromedarius) and bactrian (Camelus bactrianus) camels and seven major species of the Camelidae family, including wild and domesticated members (including Vicugna vicugna, Lama guanicoe, Vicugna pacos, Lama glama, Camelus ferus, Camelus dromedarius, and Camelus bactrianus). The Iranian dromedary and bactrian camels play a vital role in desert ecosystems and local livelihoods, yet their populations face challenges due to habitat loss and declining traditional pastoralism. The primary objectives of this research were to: 1) compare the complete mitochondrial genomes of Iranian camels with those of other Camelidae species to identify evolutionary divergences and conserved genetic regions, 2) analyze nucleotide and amino acid sequences of 13 protein-coding mitochondrial genes per each mitogenomes to assess functional conservation and divergence, 3) utilize SNP-based genomic data generated based on complete mitogenomes to construct a genomic relationship matrix (GRM) and validate phylogenetic inferences, and 4) resolve the taxonomic classification of Camelidae species and clarify the evolutionary position of Iranian camels within the family.
Materials and methods: Complete mitochondrial genomes of seven Camelidae species (Vicugna vicugna, Lama guanicoe, Vicugna pacos, Lama glama, Camelus ferus, Camelus dromedarius, and Camelus bactrianus) and 10 Iranian camel haplotypes (four Camelus dromedary, i.e., Haplotypes 1, 2, 3, and 4, and six Camelus bactrian, i.e., Haplotypes 1, 2, 3, 4, 5, and 6) were retrieved from NCBI. Afterwards, nucleotide and amino acid sequences of 13 PCGs (ATP6, ATP8, COX1, COX2, COX3, ND1, ND2, ND3, ND4, ND5, ND6, ND4L, and CYTB) were extracted for comparative analysis. Also, a total of 3100 SNPs were derived from whole mitogenome alignments, filtered for quality, and used for population genomic analyses. The maximum likelihood (ML) method was applied to whole mitogenome sequences and PCG alignments to reconstruct evolutionary relationships. Nucleotide diversity was calculated for PCGs and mitogenome regions. GRM was generated to quantify pairwise genetic distances. To visualize genetic structuring, heatmap clustering and principal component analysis (PCA) on the SNP dataset, and a level plot of common nucleotides were performed. A heatmap is a data visualization method based on color coding that is widely used to uncover hidden patterns in genomic data. A level plot is a graphical tool for displaying nucleotide similarity or differences between various samples based on SNP data, and is depicted as a color-coded or spectral matrix.
Results and discussion: Phylogenetic trees revealed two primary clades: Clade/Claster A: Comprised Vicugna and Lama species (Vicugna vicugna, Lama guanicoe, Vicugna pacos, and Lama glama), forming a distinct group. Clade/Claster B: Included Camelus ferus, Camelus dromedarius, and Camelus bactrianus, with Iranian dromedaries and bactrians forming subclusters closely related to Camelus ferus. Sequence identity between Iranian camels and other species ranged from 82.4% to 100%, with the highest similarity observed among C. dromedarius haplotypes. Analysis of nucleotide and amino acid sequences of all PCGs showed a clustering pattern similar to that of the complete mitochondrial genomes. However, ATP8 exhibited the highest variability, while COX1 was the most conserved, reflecting differential evolutionary pressures. Heatmap, PCA, and level plot analyses of SNP-based nucleotide similarities and GRM data confirmed the results from the complete mtDNA analysis (the separation of Vicugna/Lama and Camelus camelids, with Iranian camels grouping distinctly within the latter), demonstrating that SNPs are an effective tool for phylogenetic and evolutionary studies. SNP-based analyses proved highly congruent with traditional mtDNA methods, validating their utility for high-resolution phylogenetic studies.
Conclusions: This study provides a comprehensive genomic framework for understanding the evolutionary history of Camelidae, demonstrating the power of mitochondrial genomics and SNP-based approaches in phylogenetics, as comparative genomic analysis of mtDNA can robustly classify the major species of the Camelidae family and clarify their evolutionary relationships. The results of the present study not only refine the classification of Iranian camels but also offer a foundation for future research on camelid adaptation, domestication, and conservation.

Keywords

Main Subjects


Abbassi-Daloii, T., Sekhavati, M. H., & Tahmoorespur, M. (2016). Bioinformatics and phylogenetic analysis of mitochondrial COX3 gene in Iranian Camelus dromedaries and Camelus bactrianus. Iranian Journal of Animal Science Research, 8(2), 361-369. doi: 10.22067/ijasr.v8i2.36720 [In Persian]
Abdoli, R., Mazumder, T. H., Nematollahian, S., Sourati Zanjani, R., Abdolahi Mesbah, R., & Uddin, A. (2022). Gaining insights into the compositional constraints and molecular phylogeny of five silkworms’ mitochondrial genome. International Journal of Biological Macromolecules, 206, 543-552. doi: 10.1016/j.ijbiomac.2022.02.135
Abdoli, R., Zamani, P., & Ghasemi, M. (2018). Genetic similarities and phylogenetic analysis of human and farm animal species based on mitogenomic nucleotide sequences. Meta Gene, 15, 23-26. doi: 10.1016/j.mgene.2017.10.004
Ahmad, S., Yaqoob, M., Hashmi, N., Ahmad, S., Zaman, M. A., & Tariq, M. (2010). Economic importance of camel: Unique alternative under crisis. Pakistan Veterinary Journal30(4), 191-197.
Alaqeely, R., Alhajeri, B. H., Almathen, F., & Alhaddad, H. (2021). Mitochondrial sequence variation, haplotype diversity, and relationships among dromedary camel-types. Frontiers in Genetics12, 723964. doi: 10.3389/fgene.2021.723964
Arefnejad, B., Zeinalabedini, M., Talebi, R., Mardi, M., Ghaffari, M. R., Vahidi, M. F., Nekouei, M. K., Szmatoła, T., & Salekdeh, G. H. (2024). Unveiling the population genetic structure of Iranian horses breeds by whole-genome resequencing analysis. Mammalian Genome35(2), 201-227. doi: 10.1007/s00335-024-10035-6
Azghandi, M., & Tahmoores-Pour, M. (2015). Genetic and phylogenetic analysis of D-Loop region in camelus dromedaries and camelus bactrianus of Iran. Journal of Ruminant Research, 3(2), 93-110. doi: 20.1001.1.23454253.1394.3.2.6.3 [In Persian]
Behura, S. K. (2015). Insect phylogenomics. Insect Molecular Biology, 24, 403-411. doi: 10.1111/imb.12174
Burland, T. (1999). DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology, 132, 71-91. doi: 10.1385/1-59259-192-2:71
Chial, H., & Craig, J. (2008). mtDNA and mitochondrial diseases. Nature Education, 1, 217.
Cui, P., Ji, R., Ding, F., Qi, D., Gao, H., Meng, H., Yu, J., Hu, S., & Zhang, H. (2007). A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of camelidae. BMC genomics8, 1-10. doi: 10.1186/1471-2164-8-241
FAO. (2014). Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Guo, Y., Liu, H., Feng, J., Li, J., Ye, Y., Guo, B., & Qu, C. (2021). Characterization of the complete mitochondrial genomes of two species of Penaeidae (Decapoda: Dendrobranchiata) and the phylogenetic implications for Penaeoidea. Genomics, 113(1), 1054-1063. doi: 10.1016/j.ygeno.2020.11.001
Jamshidi, S., & Abdoli, R. (2023). Percent identity and phylogenetic relationships of Caspian Sea sturgeon species based on mitochondrial genome sequences. Journal of Fisheries76(3), 341-355. doi:  10.22059/jfisheries.2023.358558.1384 [In Persian]
Lenstra, J., Groeneveld, L. F., Eding, H., Kantanen, J., Williams, J., Taberlet, P., Nicolazzi, E., Sölkner, J., Simianer, H., & Ciani, E. (2012). Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. Animal Genetics, 43, 483-502. doi: 10.1111/j.1365-2052.2011.02309.x
Ludwig, A., Alderson, L., Fandrey, E., Lieckfeldt, D., Soederlund, T., & Froelich, K. (2013). Tracing the genetic roots of the indigenous White Park Cattle. Animal Genetics, 44, 383-386. doi: 10.1111/age.12026
Manee, M. M., Alshehri, A. M., Binghadir, A. S., Aldhafer, H. S., Alswailem, M. R., Algarni, T. A., Al-Shomrani, M. B., & Al-Fageeh, B. M. (2019). Comparative analysis of camelid mitochondrial genomes. National Library of Medicine, 98, 1-12. doi: 10.1007/s12041-019-1134-x
Mohamadipoor Saadatabadi, L., Mohammadabadi, M., Ghanatsaman, Z. A., Babenko, O., Stavetska, R. V., Kalashnik, O. M., Afanasenko, V., Kochuk-Yashchenko, O. A., Kucher, D. M., & Nanaei, H. A. (2023). Data of whole-genome sequencing of Karakul, Zel, and Kermani sheep breeds. BMC Research Notes16(1), 353. doi: 10.1186/s13104-023-06630-6
Moore, W. S. (1995). Inferring phylogenies from mtDNA variation: mitochondrial‐gene trees versus nuclear‐gene trees. Evolution49(4), 718-726. doi: 10.1111/j.1558-5646.1995.tb02308.x
Nobari, K., Bahari, A., & Gazanfari, S. (2022a). Molecular diversity and phylogenetic analysis of Turkmen camel and different species of camels based on CYTB gene sequence. Iranian Journal of Animal Science Research14(3), 447-457. doi: 10.22067/ijasr.2021.69937.1017 [In Persian]
Nobari, K., Yuosefi, K., & Kamali, R. (2022b). Comparison of ATP6 gene sequence of Iranian Turkmen camel, one-humped and two-humped domestic and wild species. Breeding and Improvement of Livestock2(3), 31-44. doi: 10.22034/bilj.2022.337591.1017 [In Persian]
Paradis, E., & Schliep, K. (2019). “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.” Bioinformatics, 35, 526-528. doi: 10.1093/bioinformatics/bty633
Parsa Yeganeh, L., Sadeghi, M., Azarbaijani, R., Daneshvar Amoli, A., Mohamadi Moghanjoghi, S., Farzaneh, P., Shahzdeh Fazeli, S. A., & Khaledi, H. (2020). Identification and record of DNA barcode of Iranian Bactrian camel (Camelus bactrianus). Developmental Biology12(3), 11-20.
Pasandideh, R., & Abdoli, R. (2024). Study of genetic similarities and phylogenetic relationships of 10 Penaeidae shrimp species based on the sequences of the mitochondrial genome. Aquatic Physiology and Biotechnology11(4), 49-81. doi: 10.22124/japb.2023.24411.1494 [In Persian]
Pramod, R. K., Velayutham, D., P. K., S., P. S., B., Zachariah, A., Zachariah, A., … Thomas, G. (2018). The complete mitochondrial genome of Indian cattle (Bos indicus). Mitochondrial DNA Part B3(1), 207-208. doi: 10.1080/23802359.2018.1437836
Rabiei, F., Abdoli, R., Rafeie, F., & Ghavi Hossein-Zadeh, N. (2022). Genetic similarities and phylogenetic analysis of wild and domesticated species of sheep based on mitochondrial genome. Animal Production Research, 11(3), 1-13. doi: 10.22124/ar.2022.22429.1709 [In Persian]
Roy, S. S., Dasgupta, R., & Bagchi, A. (2014). A review on phylogenetic analysis: a journey through modern era. Computational Molecular Bioscience, 4(3), 39-45. doi: 10.4236/cmb.2014.43005
Salehi, M., & Gharahdaghi, A. A. (2013). Camel production potential and recent research in Iran. Available at: http://agris.fao.org/agris-search. Latest accessed at: 27 November 2025
Shahabi, A., & Tahmoures-Pour, M. (2015). Bioinformatics and phylogenetic analysis of NADH3 and NADH4L mitochondrial genes in Iranian Camelus bactrianusAgricultural Biotechnology Journal7(3), 163-174. doi: 10.22103/jab.2015.1139 [In Persian]
Talebi, R., Afraz, F. A., Mirhosseini, S. Z., Asadi, N., & Delirsefat, S. B. (2014a). Assessment and Genetic Characterization of Iranian Two-Humped Camel Using New World Camelidae Microsatellite Primers. Agricultural Biotechnology, 5(1), 59-65 [In Persian]
Talebi, R., Ahmadi, A., Afraz, F., & Mirhoseini, S. Z. (2014b). In Silico analysis of cytochrome P-450 between the human and camel for resistivity to hypertension and environmental toxins. Genetics in the Third Millennium1, 3386-3399 [In Persian]
Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38, 3022-3027. doi: 10.1093/molbev/msab120
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680. doi: 10.1093/nar/22.22.4673
Torabi, A., & Roudbari, Z. (2020). Phylogeny of Iranian Bactrian and Bactrian camels based on 16S rRNA gene sequences. Journal of Animal Environment12(4), 41-49. doi: 10.22034/AEJ.2020.122277 [In Persian]
VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414-4423. doi: 10.3168/jds.2007-0980
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, USA.
Yang, Z., & Rannala, B. (2012). Molecular phylogenetics: principles and practice. Nature Reviews Genetics, 13, 303-314. doi: 10.1038/nrg3186
Yi, L., Ai, Y., Ming, L., Hai, L., He, J., Guo, F. C., Qiao, X. Y., & Ji, R (2017). Molecular diversity and phylogenetic analysis of domestic and wild Bactrian camel populations based on the mitochondrial ATP8 and ATP6 genes. Livestock Science199, 95-100. doi: 10.1016/j.livsci.2017.03.015