Abdollahi, M., Rezaei, J., & Fazaeli, H. (2020). Performance, rumen fermentation, blood minerals, leukocyte and antioxidant capacity of young Holstein calves receiving high-surface ZnO instead of common ZnO.
Archives of Animal Nutrition,
74(3), 189-205.
doi: 10.1080/1745039X.2019.1690389
Alijani, K., Rezaei, J., & Rouzbehan, Y. (2020). Effect of nano-ZnO, compared to ZnO and Zn-methionine, on performance, nutrient status, rumen fermentation, blood enzymes, ferric reducing antioxidant power and immunoglobulin G in sheep.
Animal Feed Science and Technology,
267, 114532.
doi: 10.1016/j.anifeedsci.2020.114532
Anderson, K. L., Nagaraja, T. G., & Morrill, J. L. (1987). Ruminal metabolic development in calves weaned conventionally or early.
Journal of Dairy Science,
70(5), 1000-1005.
doi: 10.3168/jds.S0022-0302(87)80105-4
AOAC. (2005). Official Method of Analysis, 15 ed. Association of Official Analytical Chemists, Arlington, USA.
Bretschneider, G., Elizalde, J. C., & Pérez, F. A. (2008). The effect of feeding antibiotic growth promoters on the performance of beef cattle consuming forage-based diets: A review.
Livestock Science,
114(2-3), 135-149.
doi: 10.1016/j.livsci.2007.12.017
Brugger, D., & Windisch, W. M. (2017). Strategies and challenges to increase the precision in feeding zinc to monogastric livestock.
Animal Nutrition,
3(2), 103-108.
doi: 10.1016/j.aninu.2017.03.002
Chang, M. N., Wei, J. Y., Hao, L. Y., Ma, F. T., Li, H. Y., Zhao, S. G., & Sun, P. (2020). Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves.
Journal of Dairy Science,
103(7), 6100-6113.
doi: 10.3168/jds.2019-17610
Chen, F., Li, Y., Shen, Y., Guo, Y., Zhao, X., Li, Q., ... & Li, J. (2020). Effects of prepartum zinc-methionine supplementation on feed digestibility, rumen fermentation patterns, immunity status, and passive transfer of immunity in dairy cows.
Journal of Dairy Science,
103(10), 8976-8985.
doi: 10.3168/jds.2019-17991
Cortinhas, C. S., Freitas Júnior, J. E. D., Naves, J. D. R., Porcionato, M. A. D. F., Rennó, F. P., & Santos, M. V. D. (2012). Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic profile, milk yield and composition.
Revista Brasileira de Zootecnia,
41, 1477-1483.
doi: 10.1590/S1516-35982012000600023
Del Valle, T. A., Jesus, E. F. D., Paiva, P. G. D., Bettero, V. P., Zanferari, F., Acedo, T. S., ... & Rennó, F. P. (2015). Effect of organic sources of minerals on fat-corrected milk yield of dairy cows in confinement.
Revista Brasileira de Zootecnia,
44(3), 103-108.
doi: 10.1590/S1806-92902015000300004
Enjalbert, F. (2009). The relationship between trace elements status and health in calves. Revue de Medecine Veterinaire, 160(8-9), 429-435.
Feldmann, H. R., Williams, D. R., Champagne, J. D., Lehenbauer, T. W., & Aly, S. S. (2019). Effectiveness of zinc supplementation on diarrhea and average daily gain in pre-weaned dairy calves: A double-blind, block-randomized, placebo-controlled clinical trial.
PLoS One,
14(7), e0219321.
doi: 10.1371/journal.pone.0219321
Ghavidel, M. , Toghdory, A. , Ghoorchi, T. & Asadi, M. (2024). Influence of chelated iron supplement containing organic acids and amino acids on growth performance, skeletal growth indices, fecal score, and blood parameters in suckling calves. Animal Production Research, 13(3), 61-74. [In Persian]. doi: 10.22124/ar.2024.26191.1806
Gelsinger, S. L., Pino, F., Jones, C. M., Gehman, A. M., & Heinrichs, A. J. (2016). Effects of a dietary organic mineral program including mannan oligosaccharides for pregnant cattle and their calves on calf health and performance.
The Professional Animal Scientist,
32(2), 205-213.
doi: 10.15232/pas.2015-01475
Glover, A. D., Puschner, B., Rossow, H. A., Lehenbauer, T. W., Champagne, J. D., Blanchard, P. C., & Aly, S. S. (2013). A double-blind block randomized clinical trial on the effect of zinc as a treatment for diarrhea in neonatal Holstein calves under natural challenge conditions.
Preventive Veterinary Medicine,
112(3-4), 338-347.
doi: 10.1016/j.prevetmed.2013.09.001
Hess, J. B., Downs, K. M., Macklin, K. S., Norton, R. A., & Bilgili, S. F. (2008). Organic Trace Minerals for Broilers and Breeders. Poultry Science Department, Auburn University, AL, School of Agribusiness and Agrisciences, Middle Tennessee State University, Murfreesboro, TN, USA.
Jacometo, C. B., Osorio, J. S., Socha, M., Corrêa, M. N., Piccioli-Cappelli, F., Trevisi, E., & Loor, J. J. (2015). Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress.
Journal of Dairy Science,
98(11), 7717-7729.
doi: 10.3168/jds.2015-9359
Juniper, D. T., Rymer, C., & Briens, M. (2019). Bioefficacy of hydroxy-selenomethionine as a selenium supplement in pregnant dairy heifers and on the selenium status of their calves.
Journal of Dairy Science,
102(8), 7000-7010.
doi: 10.3168/jds.2018-16065
Kargar, S., Mousavi, F., Karimi-Dehkordi, S., & Ghaffari, M. H. (2018). Growth performance, feeding behavior, health status, and blood metabolites of environmentally heat-loaded Holstein dairy calves fed diets supplemented with chromium.
Journal of Dairy Science,
101(11), 9876-9887.
doi: 10.3168/jds.2017-14154
Kinal, S., Korniewicz, A., Slupczynska, M., Bodarski, R., Korniewicz, D., & Cermak, B. (2007). Effect of the application of bioplexes of zinc, copper and manganese on milk quality and composition of milk and colostrum and some indices of the blood metabolic profile of cows. Czech Journal of Animal Science, 52(12), 423. doi: 10.17221/2338-CJAS
Larson, L. L., Owen, F. G., Albright, J. L., Appleman, R. D., Lamb, R. C., & Muller, L. D. (1977). Guidelines toward more uniformity in measuring and reporting calf experimental data.
Journal of Dairy Science,
60(6), 989-991.
doi: 10.3168/jds.S0022-0302(77)83975-1
Ma, T., & Suzuki, Y. (2018). Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals.
Veterinary Immunology and Immunopathology,
205, 35-48.
doi: 10.1016/j.vetimm.2018.10.004
Mallaki, M., Norouzian, M. A., & Khadem, A. A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turkish Journal of Veterinary & Animal Sciences, 39(1), 75-80. doi: 10.3906/vet-1405-79
Malmuthuge, N., Liang, G., & Guan, L. L. (2019). Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes. Genome Biology, 20, 1-16. doi: 10.1186/s13059-019-1786-0
Mandal, G. P., Dass, R. S., Isore, D. P., Garg, A. K., & Ram, G. C. (2007). Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus× Bos taurus) bulls.
Animal Feed Science and Technology,
138(1), 1-12.
doi: 10.1016/j.anifeedsci.2006.09.014
Marques, R. S., Cooke, R. F., Rodrigues, M. C., Cappellozza, B. I., Mills, R. R., Larson, C. K., ... & Bohnert, D. W. (2016). Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring.
Journal of Animal Science,
94(3), 1215-1226.
doi: 10.2527/jas2015-0036
McDonald, P., Edwards, R. A., Greenhalgh, J. F. D., Morgan, C. A., Sinclair, L. A., & Wilkinson, R. G. (2011). Animal Nutrition. ed. Essex: Pearson Education Limited.
Moazeni Zadeh, M. H., Towhidi, A., Zhandi, M., & Rezayazdi. K. (2022). Effects of supplementation of some trace minerals on growth performance, biochemical, enzymatic, antioxidant, hormonal and hematological parameters in Holstein suckling calves.
Journal of Ruminant Research,
11(1), 75-92.
doi: 10.22069/ejrr.2022.20590.1863 [In Persian]
Mousavi-Haghshenas, M. A., Hashemzadeh, F., Ghorbani, G. R., Ghasemi, E., Rafiee, H., & Ghaffari, M. H. (2022). Trace minerals source in calf starters interacts with birth weights to affect growth performance.
Scientific Reports,
12(1), 18763.
doi: 10.1038/s41598-022-23459-4
Mudgal, V., Saxena, N., Kumar, K., Dahiya, S. S., Punia, B. S., & Sharma, M. L. (2019). Sources and levels of trace elements influence some blood parameters in murrah buffalo (Bubalus bubalis) calves.
Biological Trace Element Research,
188, 393-403.
doi: 10.1007/s12011-018-1439-2
Nemec, L. M., Richards, J. D., Atwell, C. A., Diaz, D. E., Zanton, G. I., & Gressley, T. F. (2012). Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates.
Journal of Dairy Science,
95(8), 4568-4577.
https://doi.org/10.3168/jds.2012-5404
Ortman, K., & Pehrson, B. (1999). Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast.
Journal of Animal Science,
77(12), 3365-3370.
doi: 10.2527/1999.77123365x
Osorio, J. S., Wallace, R. L., Tomlinson, D. J., Earleywine, T. J., Socha, M. T., & Drackley, J. K. (2012). Effects of source of trace minerals and plane of nutrition on growth and health of transported neonatal dairy calves.
Journal of Dairy Science,
95(10), 5831-5844.
doi: 10.3168/jds.2011-5042
Pambu-Gollah, R., Cronje, P. B., & Casey, N. H. (2000). An evaluation of the use of blood metabolite concentrations as indicators of nutritional status in free-ranging indigenous goats. South African Journal of Animal Science, 30(2), 115-120.
Ryan, A. W., Kegley, E. B., Hawley, J., Powell, J. G., Hornsby, J. A., Reynolds, J. L., & Laudert, S. B. (2015). Supplemental trace minerals (zinc, copper, and manganese) as sulfates, organic amino acid complexes, or hydroxy trace-mineral sources for shipping-stressed calves.
The Professional Animal Scientist,
31(4), 333-341.
doi: 10.15232/pas.2014-01383
SAS Institute. (2004). User’s Guide. Version 9.1: Statistics. SAS Institute, Cary, NC.
Sethy, K., Behera, K., Mishra, S. K., Gupta, S. K., Sahoo, N., Parhi, S. S., ... & Khadanga, S. (2018). Effect of organic zinc supplementation on growth, metabolic profile and antioxidant status of Ganjam sheep.
Indian Journal of Animal Research,
52(6), 839-842.
doi: 10.18805/ijar.B-3297
Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows.
The Veterinary Journal,
176(1), 70-76.
doi: 10.1016/j.tvjl.2007.12.015
Spears, J. W., & Weiss, W. P. (2014). Invited review: Mineral and vitamin nutrition in ruminants.
The Professional Animal Scientist,
30(2), 180-191.
doi: 10.15232/S1080-7446(15)30103-0
Stamey, J. A., Janovick, N. A., Kertz, A. F., & Drackley, J. K. (2012). Influence of starter protein content on growth of dairy calves in an enhanced early nutrition program.
Journal of Dairy Science,
95(6), 3327-3336.
doi: 10.3168/jds.2011-5107
Suarez-Mena, F. X., Hill, T. M., Heinrichs, A. J., Bateman II, H. G., Aldrich, J. M., & Schlotterbeck, R. L. (2011). Effects of including corn distillers dried grains with solubles in dairy calf feeds.
Journal of Dairy Science,
94(6), 3037-3044.
doi: 10.3168/jds.2010-3845
Suarez-Mena, F. X., Hu, W., Dennis, T. S., Hill, T. M., & Schlotterbeck, R. L. (2017). β-Hydroxybutyrate (BHB) and glucose concentrations in the blood of dairy calves as influenced by age, vaccination stress, weaning, and starter intake including evaluation of BHB and glucose markers of starter intake.
Journal of Dairy Science,
100(4), 2614-2624.
doi: 10.3168/jds.2016-12181
Teixeira, A. G. V., Lima, F. S., Bicalho, M. L. S., Kussler, A., Lima, S. F., Felippe, M. J., & Bicalho, R. C. (2014). Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves.
Journal of Dairy Science,
97(7), 4216-4226.
doi: 10.3168/jds.2013-7625
Underwood, E. J., & Suttle, N. F. (1999). The Mineral Nutrition of Livestock .3rd edition.
Van Keulen, J. Y. B. A., & Young, B. A. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies.
Journal of Animal Science,
44(2), 282-287.
doi: 10.2527/jas1977.442282x
Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.
Journal of Dairy Science,
74(10), 3583-3597.
doi: 10.3168/jds.S0022-0302(91)78551-2
Vi, R. B., McLeod, K. R., Klotz, J. L., & Heitmann, R. N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant.
Journal of Dairy Science,
87, E55-E65.
doi: 10.3168/jds.S0022-0302(04)70061-2
Wang, R. L., Liang, J. G., Lu, L., Zhang, L. Y., Li, S. F., & Luo, X. G. (2013). Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows.
Biological Trace Element Research,
152, 16-24.
doi: 10.1007/s12011-012-9585-4
Zarbalizadeh-Saed, A., Seifdavati, J., Abdi-Benemar, H., Salem, A. Z., Barbabosa-Pliego, A., Camacho-Diaz, L. M., ... & Seyed-Sharifi, R. (2020). Effect of slow-release pellets of selenium and iodine on performance and some blood metabolites of pregnant Moghani ewes and their lambs.
Biological Trace Element Research,
195, 461-471.
doi: 10.1007/s12011-019-01853-w