Effect of iron nanoparticles and liquid methionine (Alimet) in ovo feeding and diet on broiler chicken performance

Document Type : Research Paper

Authors

1 Professor, Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

2 PhD Graduated student of poultry nutrition, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

3 Assistant professor Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

Abstract

An experiment was conducted with 644 Ross strain fertilized eggs in 8 treatments and 4 replicates. Experimental treatments were: 1-(without any injection) control; 2-Injection of sodium chloride 0.9 percent) control; 3- Injection of 25ppm Iron sulphate (III); 4- Injection of  25ppm Iron nanoparticle; 5- injection of 100ppm Alimet (liquid methionine); 6- Injection of  150ppm Iron-Alimet chelate; 7- Injection of  100ppm Iron nanoparticle and Alimet and 8- Adding of 0.002g/kg Iron nanoparticles to diet. On the day of incubation, the yolk sac of in ovo injection groups was identified by candling and 0.3 mL of each in ovo solution was injected. Treatments receiving iron nanoparticles+Alimet chelate significantly increased post-hatch chicken weight compared to treatments receiving iron, iron nanoparticles and Alimet (P<0.05). Also iron nanoparticles+Alimet increased chick weight to egg weight ratio compared to all other treatments except for two control treatments. All in ovo injection treatments except for iron nanoparticles+Alimet chelate significantly decreased percentage hatchability (P<0.05). There was a significant improvement in feed conversion ratio of in ovo iron nanoparticles+Alimet injected compared to other treatments during starter period (P<0.05). In ovo injection of iron nanoparticles+Alimet and dietary supplementation of iron nanoparticles significantly increased production index at 1-21 d of age (P<0.05). In total results indicated that injection of iron nanoparticles+Alimet in hatching fertile eggs improved performance parameters in broilers.

Keywords


موسوی س. ن.، شیوازاد م.، چمنی م.، لطف اللهیان ه. و صادقی ع. ا. 1390. اثرات تزریق اسیدهای آمینه، کربوهیدرات و اسید بوتیریک در تخم‌مرغ‌های جوجه‌کشی بر ریخت‌شناسی روده و عملکرد جوجه‌های گوشتی. مجله علوم دامی ایران. 42 (2): 153-160.
Abdel-Monem M. M. 1996. Salts of alfa-hydroxy aliphatic carboxylic acids ‎and thereof. Patent. US 5583243.‎
Al-Murrani W. K. 1978. Maternal effects on embryonic and post embryonic in poultry. British Poultry Science, 19: 277-281.
Al-Murrani W. K.  1982.  Effect  of  injecting  amino  acids  into  the  egg  on  embryonic  and  subsequent growth in the domestic fowl. British Poultry Science, 23: 171-174.
Ahmadi F. and Rahimi F. 2010. The effect of different levels of nanosilver ‎on performance and retention silver in edible tissue of broilers. World ‎Applied Science Journal, 12: 1-4.‎
Ahmadi F., Ebrahimnezhad Y., Maheri Sis N. and Ghiasi Ghalehkandi J. ‎‎2013. The  effects  of  zinc  oxide  nanoparticles  on  performance, ‎digestive  organs  and  serum  lipid  concentrations  in  broiler chickens ‎during starter period. International Journal of Biosciences, 3: 23-29.‎
Bakyaraj S., Bhanja S.K., Majumdar S. and Dash B. 2012. Modulation of ‎post-hatch growth and immunity through in ovo supplemented nutrients in ‎broiler chickens. Journal of the Science of Food and Agriculture, 92: 313-‎‎320.‎
Bhanja S. K., Mandal A. B. and Goswami T. K. 2004. Effect of in ovo injection of amino acids on growth, ‎immune response, development of digestive organs and carcass yields of broiler. Indian Journal of Poultry ‎Science, 39: 212-218.‎
Bess F., Vieira S. L., Favero A., Cruz R. A. and Nascimento P. C. ‎‎2012. Dietary iron effects on broiler breeder performance and egg iron ‎contents. Animal Feed Science and Technology, 178: 67-73.‎
Chamani M., Tasharrofi S. H. Forudi F. Sadeghi A. A. and Aminafshar M. 2012. Evaluation the effects of in-ovo‏ ‏injection of different nutrients on ‎hatch percentage, performance and carcass parameters of broilers. Annals ‎of Biological Research, 3: 3771-3776.
Dibner J. J. 2003. Review of the metabolism of 2-hydroxy-4-‎‎(methylthio) butanoic acid. World’s Poultry Science Journal, 59: 99-110.‎
dos Santos T. T., Corzo A., Kidd M. T., McDaniel C. D., Torres Filho R. A. and ‎Araújo L. F. 2010. Influence of in ovo inoculation with various nutrients ‎and egg size on broiler performance”. Journal of Applied Poultry Research, ‎‎19: 1-12.‎
Feng J., Ma W. Q., Xu Z. R., He J. X., Wang Y. Z. and Liu J. X. 2009. The ‎effect of iron glycine chelate on tissue mineral levels, fecal mineral ‎concentration, and liver antioxidant enzyme activity in weanling pigs”. ‎Animal Feed Science and Technology, 150: 106-113.‎
Feng J., Ma W. Q., Xu Z. R., Wang Y. Z., and Liu J. X. 2007. Effects of iron ‎glycine chelate on growth, haematological and immunological ‎characteristics in weaning pigs. Animal Feed Science and Technology, ‎‎134: 261-272.‎
Gaafar K. and Selim S. 2013. Effect of in-ovo administration with two levels ‎of amino acids mixture on the performance of newly hatched muscovy ‎ducklings”. Emirates Journal of Food and Agriculture, 25(1): 1-9.‎
Harvey J. W. 2000. Microcytic anemia. In: Feldman, B.F., Zinkl, J.G., Jain, N.C. (Eds.), Schalm’s Veterinary Hematology, fifth ed. Lippincott, Williams and Wilkins, Philadelphia, pp. 201–20.
Jang J. H. and Lim H. B. 2010. Characterization and analytical application of ‎surface modified magnetic nanoparticles. Microchemical Journal, ‎‎94 : 148-158.
Kim G. B., Seo Y. M., Shin K. S., Rhee A. R., Han J. and Paik I. K. ‎‎2011. Effects of supplemental copper-methionine chelate and copper-soy ‎proteinate on the performance, blood parameters, liver mineral content, and ‎intestinal microflora of broiler chickens. Journal of Applied Poultry Research, ‎‎20: 21-32.‎
Marinescu G., Patron L., Culita D. C., Neagoe C., Lepadatu C. I. Balint I., ‎Bessais L. and Cizmas C. B. 2006. Synthesis of magnetite nanoparticles in ‎the presence of aminoacids. Journal of Nanoparticle Research, 8: 1045-1051.‎
Miles R. D. 2000. Trace minerals and avian embryo development. Ciência ‎Animal Brasileira, 2: 1-10. ‎
Nikonova I. N., Yu G., Folmanisb G. E., Folmanisb L. V., Kovalenkob G., Yu Lapteva I. Egorovc A., Fisininc V. I. and Tananaevd I. G. 2011. Iron Nanoparticles as a Food Additive for Poultry. Doklady Biological Sciences, 440: 328–331.
Nollet L., Huyghebaert G. and Spring P. 2008. Effect of different levels of ‎dietary organic (bioplex) trace minerals on live performance of broiler ‎chickens by growth phases. Journal of Applied Poultry Research, 17: 109-‎‎115.‎
Noori A., Parivar K., Modaresi M., Messripour M., Yousefi M. H. and Amiri G. R. 2011. Effect of magnetic iron oxide nanoparticles on pregnancy and testicular development of mice. African Journal of Biotechnology, 10(7): 1221-1227.
Noy Y. and Uni Z. 2010. Early nutritional strategies. World Poultry Science Journal, 66: 639-645.
Ohta K. and Kidd M. T. 2001. Optimum site for in ovo amino acid injection in broiler breeder eggs. ‎Poultry Science, 80: 1425-1429‎.
Ohta K., Tannahill D., Yoshida K., Johnson A. R., Cook G. M. W. and Keynes ‎R. J. 1999. Embryonic lens repels retinal ganglion cell axons. ‎Development Biology, 211: 124-132‎‏.‏
Ohta Y., Kidd M. T. and Ishibashi T. 2001. Embryo growth and amino acid concentration profiles of broiler breeder eggs, embryos, and chicks after in ovo administration of amino acids. Poultry Science, 80: 1430-1436.
Richards M. P. 1997. Trace mineral metabolism in the avian embryo. Poultry ‎Science, 76: 152-164.‎
Salata O. V. 2004. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2: 3.
SAS, 2004.  Institute, SAS user’s Guide: Statistics Version 9.2. SAS Institute Inc, Cary, NC.
Sawosza E., Bineka M., Grodzika M., Zieliñskaa M., Szmidt P., Niemiec M. and Chwalibog A.  2007. Influence  of  hydro  colloidal  silver  nanoparticles  on gastrointestinal  micro  flora  and  morphology  of enterocytes of quails. Animal Nutrition, 61: 444-451.
Shafey T. M., Al-Batshan H. A., Al-Owaimer A. N. and Al-Samawei K. A. 2010.  Effects of in ovo administration  of  L-carnitine  on  hatchability  performance,  glycogen  status  and  insulin-like  growth factor-1 of broiler chickens. British Poultry Science, 51: 122-131.
Spratt R. S., and Leeson S. 1987. Effect of protein and energy intake of broiler breeder hens on performance of broiler chicken offspring. Poultry Science, 66: 1489-1494.
Tako E. and Glahn R. P. 2011. Iron status of the late term (Gallus gallus) ‎embryo and hatchling. International Journal Poultry Science, 10: 42-48.‎
Tako E., Ferket P. R. and Uni Z. 2005. Changes in chicken intestinal zinc exporter mRNA expression and small intestinal functionality following intra-amniotic zinc-methionine administration. Journal of Nutritional Biochemistry, 16: 339-346.
Uni Z., Ferket P. R., Tako E. and Kedar O. 2005. In ovo feeding improves energy status of late-term chicken embryos. Poultry Science, 84: 764-770.
Wang Y. 2009. Differential effects of sodium selenite and nano-se on growth ‎performance, tissue se distribution, and glutathione peroxidase activity of ‎avian broiler. Biological Trace Element Research, 128: 184-190.
Yair R. and Uni Z. 2011. Content and uptake of minerals in the yolk of ‎broiler embryos during incubation and effect of nutrient enrichment. ‎Poultry Science, 90: 1523-1531.
‎Yang X. J., Sun X. X., Li C. Y., Wu X. H. and Yao J. H. 2011. Effects of copper, ‎iron, zinc, and manganese supplementation in a corn and soybean meal diet ‎on the growth performance, meat quality, and immune responses of broiler ‎chickens. Journal of Applied Poultry Research, 20: 263-271.‎
Yi G. F., Gaines A. M., Ratliff B. W., Srichana P., Allee G. L., Perryman K. R. ‎and Knight C. D. 2006. Estimating the true ileal digestible lysine and sulfur ‎amino acid requirement and comparison of the bio efficacy of 2-hydroxy-4-‎‎(methylthio)-butanoic acid and DL-methionine in eleven- to twenty-‎sixkilogram nursery pigs. Journal of Animal Science, 84: 1709-1721.
Zhao J., Shirley ‏R. B.,Vazquez-Anon M., Dibner J. J., Richards‎‏ ‏J. D., Fisher P., ‎Hampton T., Christensen K. D. Allard J. P. and Giesen A. F. 2010. Effects of ‎chelated trace minerals on growth performance, breast meat yield, and ‎footpad health in commercial meat broilers. Journal of Applied Poultry ‎Research, 19: 365-372.