Interaction of Ferula assafoetida and Artemisia aucheri essential oils with concentrate level of diet on in vitro fermentation kinetic and acidosis induction

Document Type : Research Paper

Authors

1 Graduated MSc. in Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran

2 Associate Professor, Assistant Professor, Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran

3 Assistant Professor, Department of Animal Science, Chahatmahal Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord, Iran

4 Associate Professor, Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran

5 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Shiraz Universit, Shiraz, Iran

Abstract

This experiment was aimed to study the effect of Ferula assa foetida essential oil or Artemisia aucheri essential oil in diets containing different concentrate ratios (40 and 60% of DM) on in vitro fermentation kinetic and acidosis induction. Essential oils were added at 0.05% of diet DM. Gas production parameters, pH, N-ammonia and volatile fatty acids (VFA) concentrations and total protozoa population were measured and organic matter digestibility (OMD) was estimated. The effect of Ferula assa foetida and Artemisia aucheriessential oils on prevention of in vitro acidosis induction was measured. The results showed that the interaction of diets and essential oils had no significant effect on in vitro gas production parameters, N-ammonia concentration, pH, total VFA, acetate, propionate and valerate concentrations, total protozoa population, Entodinium, Diplodinium,and Ophryoscolex population. The interaction of diets and essential oils on estimated OMD was significant (92.64 vs. 83.1 %, p < /em><0.05), and diet containing low concentrate level without essential oils had the lowest estimated OMD. Essential oils reduced gas production, total protozoa population and N-ammonia concentration (p < /em><0.05). Results of Ferula and Artemisia essential oils on prevention of in vitro acidosis induction showed that both essential oils prevent acidosis induction. It was concluded that Ferula and Artemisia essential oils improved rumen fermentation.

Keywords

Main Subjects


نعمتی شیرزی ف.، روزبهان ی.، کریمی ترشیزی م. ا.، و رضایی ج. 1391.  بررسی اثر برخی گیاهان دارویی بر پارامترهای هضم شکمبه‌ای در شرایط آزمایشگاهی. علوم دامی ایران، 43: 193-206.
یلچی ط.، تیموری یانسری ا.، رضایی م.، و چاشنی­دل ی. 1396. تعیین قابلیت انحلال و توانایی تولید اسید برخی مواد خوراکی و بررسی تخمیر برون تنی آنها در شرایط طبیعی و اسیدوز القاء شده. پژوهش­های تولیدات دامی، 16: 111-120.
Araujoa R. C., Piresa A. V., Mourãoa G. B., Abdallab A. L and Sallamc S. M. A. 2011. Use of blanks to determine in vitro net gas and methane productionwhen using rumen fermentation modifiers. Animal Feed Science and Technology, 166: 155-162.
Benchaar C., McAllister T. A. and Chouinard P. Y. 2008. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. Journal of Dairy Science, 91: 4765-4777.
Benchaar C. and Greathead H. 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166: 338-355.
Blummel M., Karsli A. and Russell J. R. 2003. Influence of diet on growth yields of rumen micro-organisms in vitro and in vivo: influence on growth yield of variable carbon fluxes to fermentation products. British Journal of Nutrition, 90: 625-634.
British Pharmacopoeia. 1998. Vol. I, British Pharmacopoeia l Commission, The Stationery Office, London, pp. 570-571.
Broderick G. A. and Kang J. H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63: 64-75.
Calsamiglia S., Busquet M., Cardozo P. W., Castillejos L. and Ferret A. 2007. Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90: 2580-2595.
Cardozo P. W., Calsamiglia S., Ferret A. and Kamel C. 2005. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. Journal of Animal Science, 83: 2572-2579.
Dehority B. A. 2003. Rumen Microbiology. British Library Cataloguing in Publication Data.
Dorman H. J. D. and Deans S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of applied microbiology, 88: 308-316.‏
Getachew G., Blümmel M., Makkar H. P. S. and Becker K. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds. Animal Feed Science and Technology, 72: 261-281.
Grant R. and Kononoff P. J. 2007. Feeding to maximize milk protein and fat yields. Neb Guide. University of Nebraska, Lincoln. USA.
Hutton P. G., Nagaraja T. G., White C. L. and Vercoe P. E. 2010. Screening plants for the antimicrobial control of lactic acidosis in ruminant livestock. In: Vercoe, P.E., Makkar H.P.S., Schlink A.C. (Eds.), In vitro screening of plant resources for extra nutritional. Attributes in Ruminants: Nuclear and Related Methodologies. IAEA, Dordrecht, Netherlands, pp. 159-189.
Isman M. B. 2000. Plant essential oils for pest and disease management. Crop Protection, 19: 603-608.‏
Kim E. T., Moon Y. H., Min K. S., Kim C. H., Kim S. C., Ahn S. K. and Lee S. S. 2013. Changes in microbial diversity, methanogenesis and fermentation characteristics in the rumen in response to medicinal plant extracts. Asian-Australasian Journal of Animal Sciences, 26: 1289-1294.
Manatbay B., Cheng Y., Mao S. and Zhu W. 2014. Effect of gynosaponin on rumen in vitro methanogenesis under different forage-concentrate ratios. Journal of Animal Science, 27: 1088-1097.
Menke K. H. and Steingass H. 1988. Estimation of energetic feed value obtained from chemical analysis and in vitro production using rumen fluid.  Journal of Animal Research and Development, 28: 7-55.
Min B. R., Attwood G. T., Reilly K., Sun W., Peters J. S., Barry T. N. and McNabb W. C. 2002. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Canadian Journal of Microbiology, 48: 911-921.‏
Molero R., Ibara M., Calsamiglia S., Ferret A. and Losa R. 2004. Effects of a specific blend of essential oil compounds on dry matter and crude protein degradability in heifers fed diets with different forage to concentrate ratios. Animal Feed Science and Technology, 114: 91-104.
NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th ed. National Academy Press, Washington, DC. USA.
Okara E. P. 2016. Comparative evaluation of the effects of whole essential oils and their active constituent compounds on the biohydrogenation of polyunsaturated fatty acids and fermentation characteristics of rumen microbes in vitro. Phd thesis. University of Essex. UK. 
Ottenstein D. M. and Bartley D. A. 1971. Separation of free acids C2–C5 in dilute aqueous solution column technology. Journal of Chromatographic Science, 9: 673-681.
Ramos S., Tejido M. L., Martínez M. E., Ranilla M. J. and Carro M. D. 2009. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage. Journal of Animal Science, 87: 2924-2934.‏
Sachan J., Kumar R., Kumar V. and Roy D. 2013. Screening of condiments and spices as potential feed additives using in vitro gas production test. Indian Veterinary Journal, 90: 125-126.
Takahashi J., Nwenya B., Santoso B.,  Sar C., Umetsu K., Kishimoto T., Nishizaki K., Kimura K. and Hamamoto O. 2005. Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Australian Journal of Animal Science, 18: 1199-1208.
Talebzadeh R., Alipour D., Saharkhiz M. J., Azarfar A. and Malecky M. 2012. Effect of essential oils of Zataria multiflora on in vitro rumen fermentation, protozoal population, growth and enzyme activity of anaerobic fungus isolated from Mehraban sheep. Animal Feed Science and Technology, 172: 115-124.
Ultee A., Kets E. P. W. and Smid E. J. 1999. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied Environmental Microbiology, 65: 4606-4610.
Van Nevel C. J. and Demeyer D. I. 1977. Effect of monensin on some rumen fermentation parameters. Annales de Recherches Veterinaries, 10: 338-340.
Vasta V., Aouadi D., Brogna D. M. R.,  Scerra M.,  Luciano G., Priolo A.  and Ben Salem H. 2013. Effect of the dietary supplementation of essential oils from rosemary and artemisia on muscle fatty acids and volatile compound profiles in Barbarine lambs. Meat Science, 95: 235-241.
Velkovic J. N, Pavloovic A. N., Mitic S. S., Tosic S. B., Stojanovic G. S.,  Kalicanin B. M,  Stanovic D. M, Stonkovic M. B., Mitic M. N. and Brcanovic J. M. 2013. Evaluation of individual phenolic compounds and antioxidant properties of black, green, herbal and fruit tea infusions consumed in Serbia: Spectrophotometrical and electrochemical approaches. Journal of Food and Nutrition Research, 52: 12-24.
Wallace R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proceedings of the Nutrition Society, 63: 621-629.‏