Abdoli, R., Zamani, P., Mirhosseini, S. Z., Ghavi Hossein-Zadeh, N., & Nadri, S. (2016). A review on prolificacy genes in sheep. Reproduction in Domestic Animals, 51, 631-637. doi: 10.1111/rda.12733
Badbarin, N., Mirhoseini, S. Z., Rabiei, B., & Ghavi Hossein-Zadeh, N. (2014). Identification of QTL for litter size on chromosome 1 in Markhoz goats using SSR markers. Animal Production Research, 3(3), 73-81. [In Persian]
Begagic, E., Beculic, H., Duzic, N., Dzidic-Krivic, A., Pugonja, R., Muharemovic, A., & Pojskic, M. (2024). CRISPR/Cas9-Mediated Gene Therapy for Glioblastoma: A Scoping Review. Biomedicines, 12(1), 238. doi: 10.3390/biomedicines12010238
Bertho, S., Clapp, M., Banisch, T. U., Bandemer, J., Raz, E., & Marlow, F. L. (2021). Zebrafish dazl regulates cystogenesis and germline stem cell specification during the primordial germ cell to germline stem cell transition. Development, 148(7), dev187773. doi: 10.1242/dev.187773
Diskin, M. G. (2018). Review: Semen handling, time of insemination and insemination technique in cattle. Animal, 12(s1), s75-s84. doi: 10.1017/S1751731118000952
Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. doi: 10.1126/science.1258096
Ghavi Hossein-Zadeh, N. (2024). An overview of recent technological developments in bovine genomics. Veterinary and Animal Science, 25, 100382. doi: 10.1016/j.vas.2024.100382
Gill, M. E., Hu, Y.-C., Lin, Y., & Page, D. C. (2011). Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells.
Proceedings of the National Academy of Sciences, 108(18), 7443-7448.
doi: 10.1073/pnas.1104501108
González, R., & Dobrinski, I. (2015). Beyond the mouse monopoly: studying the male germ line in domestic animal models.
ILAR journal, 56(1), 83-98.
doi: 10.1093/ilar/ilv004
Hashemi, M. S., Mozdarani, H., Ghaedi, K., & Nasr‐Esfahani, M. (2018). Among seven testis‐specific molecular markers, SPEM 1 appears to have a significant clinical value for prediction of sperm retrieval in azoospermic men.
Andrology, 6(6), 890-895.
doi: 10.1111/andr.12528
Horvath, P., Romero, D. A., Coute-Monvoisin, A. C., Richards, M., Deveau, H., Moineau, S., & Barrangou, R. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology, 190(4), 1401-1412. doi: 10.1128/JB.01415-07
Houston, D. W., & King, L. (2000). A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development, 127(3), 447-456. doi: 10.1242/dev.127.3.447.
Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262-1278. doi: 10.1016/j.cell.2014.05.010
Jung, H. J., Song, H., & Yoon, M. J. (2014). Stage-dependent DAZL localization in stallion germ cells. Animal Reproduction Science, 147(1-2), 32-38. doi: 10.1016/j.anireprosci.2014.03.011
Kee, K., Angeles, V. T., Flores, M., Nguyen, H. N., & Reijo Pera, R. A. (2009). Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature, 462(7270), 222-225. doi: 10.1038/nature08562
Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., & Valen, E. (2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res, 47(W1), W171-W174. doi: 10.1093/nar/gkz365
Lara, N. L., Goldsmith, T., Rodriguez-Villamil, P., Ongaratto, F., Solin, S., Webster, D., & Bondareva, A. (2023). DAZL knockout pigs as recipients for spermatogonial stem cell transplantation.
Cells, 12(21), 2582.
doi: 10.3390/cells12212582
Li, H., Liang, Z., Yang, J., Wang, D., Wang, H., Zhu, M., & Xu, E. Y. (2019). DAZL is a master translational regulator of murine spermatogenesis. National Science Review, 6(3), 455-468.
Li, T., Wang, X., Zhang, H., Chen, H., Liu, N., Xue, R., & Ma, Y. (2020). Gene expression patterns and protein cellular localization suggest a novel role for DAZL in developing Tibetan sheep testes. Gene, 731, 144335. doi: 10.1016/j.gene.2020.144335
Nasr-Esfahani, M. H., Hosseini, S. M., Hajian, M., Forouzanfar, M., Ostadhosseini, S., Abedi, P., & Vojgani, H. (2011). Development of an optimized zona-free method of somatic cell nuclear transfer in the goat. Cell Reprogram, 13(2), 157-170. doi: 10.1089/cell.2010.0083
Schrans-Stassen, B. H., Saunders, P. T., Cooke, H. J., & de Rooij, D. G. (2001). Nature of the spermatogenic arrest in Dazl -/- mice. Biology of Reproduction, 65(3), 771-776. doi: 10.1095/biolreprod65.3.771
Seligman, J., & Page, D. C. (1998). TheDazhGene Is Expressed in Male and Female Embryonic Gonads before Germ Cell Sex Differentiation.
Biochemical and Biophysical Research Communications, 245(3), 878-882.
doi: 10.1006/bbrc.1998.8530
Tan, W., Carlson, D. F., Lancto, C. A., Garbe, J. R., Webster, D. A., Hackett, P. B., & Fahrenkrug, S. C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences, 110(41), 16526-16531. doi: 10.1073/pnas.1310478110
Tang, L., González, R., & Dobrinski, I. (2015). Germline modification of domestic animals. Animal reproduction/Colegio Brasileiro de Reproducao Animal, 12(1), 93.
Vogel, T., Speed, R. M., Ross, A., & Cooke, H. J. (2002). Partial rescue of the Dazl knockout mouse by the human DAZL gene. Molecular Human Reproduction 8(9), 797-804. doi: 10.1093/molehr/8.9.797
Wang, J., Ren, J., Wang, Q., Li, C., Han, Z., Chen, T., & Hai, T. (2023). Nanos3 knockout pigs to model transplantation and reconstruction of the germline. Cell Proliferation, 56(5), e13463. doi: 10.1111/cpr.13463
Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., & Chen, Y. (2015). Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports, 5(1), 13878. doi: 10.1038/srep13878
Zagore, L. L., Sweet, T. J., Hannigan, M. M., Weyn-Vanhentenryck, S. M., Jobava, R., Hatzoglou, M., Zhang, C., & Licatalosi, D. D. (2018). DAZL regulates germ cell survival through a network of PolyA-proximal mRNA interactions. Cell Reports, 25(5), 1225-1240. e6. doi: 10.1016/j.celrep.2018.10.012