بررسی اثرات همگنی و ناهمگنی اجزای واریانس در سطوح مختلف اندازه گله-سال بر پارامترهای ژنتیکی تولید شیر گاوهای هلشتاین ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی دانشکده علوم کشاورزی، دانشگاه گیلان

2 دانشیار گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

3 استاد گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

چکیده

در این تحقیق ناهمگنی اجزای واریانس تولید شیر در جمعیت گاوهای هلشتاین ایران در سطوح مختلف اندازه گله-سال با استفاده از رکوردهای سه دوره اول شیردهی جمع­آوری شده به وسیله مرکز اصلاح نژاد دام و بهبود تولیدات دامی در طی سال­های 1362 تا 1392 بررسی شد. داده­ها شامل 245192 رکورد برای اولین دوره شیردهی، 202078 رکورد برای دومین دوره شیردهی و 147253 رکورد برای دوره شیردهی سوم بودند که بر اساس اندازه گله-سال به سه دسته بزرگ، متوسط و کوچک دسته­بندی شدند. برای بررسی ناهمگنی واریانس­ها از آزمون بارتلت استفاده شد. نتایج آزمون بارتلت برای تولید شیر در سه دوره شیردهی معنی­دار (01/0P < ) بود که ناهمگن بودن واریانس­ها در هر سه اندازه گله-سال را نشان می­دهد. به منظور برطرف نمودن احتمالی و یا کاهش ناهمگنی واریانس­ها از روش­های مختلف تبدیل داده (لگاریتمی، جذری، باکس-کاکس و زاویه­ای) استفاده شد. بکارگیری تبدیل داده­ها به همگنی واریانس منجر نشد. پارامترهای ژنتیکی، وراثت­پذیری­ها و اجزای واریانس با استفاده از مدل حیوانی و نرم افزار VCE برآورد شدند. برآوردهای وراثت­پذیری بدون تبدیل داده­ها در زایش­ها و گله-­سال­های مختلف از 184/0-142/0 در تجزیه تک صفتی و از 221/0-143/0 در تجزیه سه صفتی تغییر کرد و پس از تبدیل داده­ها مقادیر وراثت­پذیری اندکی افزایش یافتند. تبدیل داده­ها اثر قابل ملاحظه­ای روی رتبه­بندی حیوانات داشت و بر اساس نوع تبدیل، نسبت­های متفاوتی از گاوهای نر و ماده ممتاز در مقایسه با سناریوی واریانس همگن از فهرست دام­های برتر خارج شدند که روش تبدیل باکس-کاکس اثر کمتری بر رتبه و همبستگی رتبه­ای حیوانات برتر داشت. بنابراین، در ارزیابی­های ژنتیکی گاوهای هلشتاین برای افزایش صحت ارزیابی و کارآیی انتخاب برای تولید شیر، در نظر گرفتن ناهمگنی واریانس­ها ضروری به نظر می­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of homogeneity and heterogeneity of variance components in different levels of herd-year size on genetic parameters for milk yield of Iranian Holsteins

نویسندگان [English]

  • J. Ehsaninia 1
  • N. Ghavi Hossein-Zadeh 2
  • A. A. Shadparvar 3
1 PhD Student, Department of Animal Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Associate Professor, Department of Animal Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Professor, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

This study was conducted to investigate the homogeneity of variance components for milk yield (MY) and to assess the effects of different data transformation methods on the ranking of elite animals in Iranian Holstein cows. Data sets included 245192 records for 1st lactation period, 202078 records for 2nd lactation and 147253 records for 3rd lactation collected from 1983 to 2014 by the Animal Breeding Center and promotion of Animal Products of Iran. Records were classified into three different groups based on herd-year size. Four different data transformation methods including Logarithmic, Arc sin, Square root and Box-Cox were applied and the data were tested for heterogeneity of variance before and after using Bartlett’s test. The results indicated the heterogeneity of variance in all three groups (P < 0.01) before transformation. Yet, data transformation did not result in homogeneity of variance across the herd size classes. The Square root and Box-Cox transformation methods decreased the heterogeneity of variance components in the first lactation period while other methods had no effect in adjusting the heterogeneity of any groups. Heritability and estimated breeding values (EBVs) were obtained for non-transformed data using different methods based on animal model using VCE program. Heritability varied from 0.142 to 0.184 in single trait analysis and 0.143 to 0.221 in multi trait analysis. Some re-ranking of animals occurred after data transformation, but the Box-Cox method had a small effect on overall rankings and Spearman's rank correlations of animals. The applied transformation caused a substantial re-ranking of EBVs of elite sire and dams considering herd size. Data transformation for adjusting heterogeneity of variance caused different proportions of top sires and dams to be excluded from lists when compared to the homogenous variance scenario. Therefore, to increase the accuracy of the evaluation and selection efficiency of milk yield, when evaluating the genetic of Holstein cows it is necessary to consider heterogeneity of variance.

کلیدواژه‌ها [English]

  • Genetic parameters
  • Data transformation
  • Milk yield
  • Holstein cow
  • Heterogeneity of variance
Boldman K. G. and Freeman A. E. 1990. Adjustment for heterogeneity of variances by herd production in dairy cow and sire evaluation. Journal of Dairy Science, 73: 503-512.
Carriedo J. A., Baro  J. A., De La Fuente L. F. and San Primitivo F. 1995. Genetic parameters for milk yield in dairy sheep. Journal of  Animal Breeding and Genetics, 112: 59- 63.
Costa C. N. 1999. An investigation into heterogeneity of variance for milk and fat yields of Holstein cows in Brazilian herd environments. Genetics and Molecular Biology, 22(3):  375-381.
De Veer J. C. and Van Veleck L. D. 1987. Genetic parameters for first lactation milk yields at three levels of production. Journal of Dairy Science, 70: 1434-1441.
Everett R. W., Keown J. F. and Taylor J. F. 1982. The problem of heterogeneous within herd error variances when identifying elite cows. Journal of Dairy Science, 65 (Suppl. 1): 100 (Abstract).
Gengler N., Wiggans G. R. and Gillon A. 2004. Estimated heterogeneity of phenotypic variance of test-day yield with a structural variance model. Journal of Dairy Science, 87: 1908-1916.
Hill W. G. 1984. On selection among groups with heterogeneous variance. Animal Production, 39: 473-477.
Hoaglin D. C.  and Welsch R. E. 1978. The hat matrix in regression and ANOVA. American Statistician, 32: 17-22.
Huquet B., Leclerc H. and Ducrocq V. 2012. Modelling and estimation of genotype by environment interactions for production traits in French dairy cattle. Genetics Selection Evolution, 44: 35.
Ibanez M. A., Carabano M. J. and Alenda R. 1999. Identification of sources of heterogeneous residual and genetic variances in milk yield data from the Spanish Holstein-Friesian population and impact on genetic evaluation. Livestock Production Science, 59: 33-49.
Ibanez M. A., Carabano M. J., Foulley J. L. and Alenda R. 1996. Heterogeneity of herd-period phenotypic variances in the Spanish Holstein­ Friesian cattle: sources of heterogeneity and genetic evaluation. Livestock Production Science, 45: 137-147.
Kominakis A., Rogdakis E. and Koutsotolis K. 1998. Genetic parameters for milk yield and litter size in Boutsiko dairy sheep. Canadian Journal of Animal Science, 78: 525-532.
Markus S., Mantysaari E. A., Stranden I., Eriksson J. A. and Lidauer M. H. 2014.Comparison of multiplicative heterogeneous variance adjustment models for genetic evaluations. Journal of Animal Breeding and Genetics, 22: 61‐65.
Meinert T. R., Pearson R. E., Vinson W. E. and Cassell B. G. 1988. Prediction of daughter’s performance from dam’s cow index adjusted for within-herd variance. Journal of Dairy Science, 71: 2220– 2231.
Nakaoka H., Gailard  C., Ibi T., Sasae Y. and Sasaki Y. 2008. Effectiveness of adjusting for heterogeneity of variance in genetic evaluation of Japanese Black cattle. Animal Science Journal, 79: 645–654.
Nikolaou M., Kominakis A. P., Rogdakis E. and Zampitis S. 2004. Effect of mean and variance heterogeneity on genetic evaluations of Lesbos dairy sheep. Livestock Production Science, 88: 107-115.
Robert-Granie C., Bonaıti B., Boichard D. and Barbat A. 1999. Accounting for variance heterogeneity in French dairy cattle genetic evaluation. Livestock Production Science, 60: 343-357.
SAS Institute. 2009. User’s Guide: Statistics, Version 9.1 Edition. SAS Inst., Inc., Cary, NC.
Strabel T., Jankowski T. and Jamrozik J. 2006. Adjustments for heterogeneous herd-year variances in a random regression model for genetic evaluations of Polish Black-and-White cattle. Journal of Applied Genetics, 47: 125-130.
Szydowski M. and Szwaczkowski T. 1993. The effect of grouping herds according to production level on the heritability of milk traits in cattle. Animal Science Papers and Reports, 11: 295–300.
Urioste J. I., Gianola D., Rekaya R., Fikse W. F. and Weigel K. A. 2001. Evaluation of extent and amount of heterogeneous variance for milk yield in Uruguayan Holsteins. Journal of Animal Science, 72: 259-268.
Van Vleck L. D. 1987. Selection when traits have different genetic and phenotypic variances in different environments. Journal of Dairy Science, 70: 337-344.
Varkoohi S., Mehrabani-Yeganeh H., Miraei-Ashtiani S. R. and Ghavi Hossein-Zadeh N. 2007. Heterogeneity of variance for milk traits at climitical regions in Holstein dairy cattle in Iran and the best methods for data transformation. Pakistan Journal of Biological Science, 10(9): 1556-1558.
Vinson W. E. 1987. Potential bias in genetic evaluations from differences in variation within herds. Journal of Dairy Science, 70(11): 2450-2455.
Visscher P. M., Thompson R. and Hill W. G. 1991. Estimation of genetic and environmental variances for fat yield in individual herds and an investigation into heterogeneity of variance between herds. Livestock Production Science, 28: 273.
Weigel K. A. and Gianola D. 1993. A computationally simple Bayesian method for estimation of heterogeneous variances. Journal of Dairy Science, 76: 1455-1465.
Winkelman A. and Schaeffer L. R. 1988. Effect of heterogeneity on dairy sire evaluation. Journal of Dairy Science, 71: 3032-3039.