مقایسه بیان ژن های لاکتوفرین و TLR4 در سلول های سوماتیک شیر گاو هلشتاین، بومی گیلان و آمیخته‌های حاصل از آنها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

2 استادیار گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

3 دانشجوی دکتری گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

4 دانشیار گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

چکیده

هدف تحقیق حاضر مقایسه بیان ژن­های لاکتوفرین و TLR4 در سلول­های سوماتیک شیر گاو و بررسی تفاوت­های ژنتیکی و آمیخته­گری بر بیان ژن­های سیستم ایمنی و همچنین اثرات ورم پستان بر بیان ژن­های مذکور است. RNA کل از سلول­های سوماتیک شیر تازه 3 گاو سالم هلشتاین، 3 گاو بومی گیلان و 3 گاو از آمیخته­های نسلF1 حاصل از آنها در مرکز اصلاح نژاد گاو بومی گیلان و 3 گاو هلشتاین دارای علائم خفیف ورم پستان بالینی استخراج شد. پس از ساخت cDNA، بیان ژن‌ها با استفاده از Real-time PCR نسبت به ژن مرجع GAPDH اندازه­گیری شد. نتایج نشان داد درحالی­که متوسط بیان هر دو ژن در آمیخته‌ها به­طور معنی­داری بالاتر از والدین بود (05/0P>)، انحراف استاندارد بیان ژن لاکتوفرین در جمعیت آمیخته­ها نیز بالا بود. بیان ژن TLR4 در گاوهای هلشتاین با علائم ورم پستان نسبت به هلشتاین بدون ورم پستان به­طور معنی­داری بیشتر بود (05/0P>)، اما تفاوت معنی­داری در بیان ژن لاکتوفرین بین گاوهای هلشتاین سالم و هلشتاین با ورم پستان مشاهده نشد (05/0P>). این مطالعه ضمن نشان دادن عدم تفاوت معنی­دار بیان هر دو ژن مورد بررسی در گاوهای هلشتاین و بومی، اثر آمیخته­گری را بر بیان ژن­های مرتبط با مقاومت ژنتیکی  به خوبی نشان داد.  

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of lactoferrin and TLR4 genes expression in milk somatic cells of Holstein and Guilan native cattle and their crossbreds

نویسندگان [English]

  • P. Rezvani 1
  • S. H. Hosseini Moghaddam 2
  • M. Moridi 3
  • M. Roostaei-Ali Mehr 4
1 MS.c student, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan
2 Assistant professor, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan
3 Ph.D student, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan
4 Associate professor, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan
چکیده [English]

The aim of the present study was to compare the expression of lactoferrin and TLR4 genes in cow milk somatic cells to investigate genetic differences effects and crossbreeding on the gene expression of the immune system as well as the effect of mastitis. Total RNA was extracted from fresh milk cells of 3 healthy Holstein, 3 Guilan Native and 3 F1 crossbred cattle belong to the National Animal Breeding Center of Iran and 3 Holstein with mild symptoms of clinical mastitis. After cDNA synthesis genes expression was measured using Real-time PCR relative to the reference gene GAPDH. The results showed while in crossbred cows the average expression of both genes was higher than parents (P<0.05), but the standard deviation of the lactoferrin gene expression was high in crossbred group. TLR4 gene expression in Holstein with clinical mastitis was significantly higher than Holstein without clinical mastitis (P<0.05), but no significant difference was observed in lactoferrin gene expression between healthy and diseased cattle (P>0.05). This study indicated that while there was non-significance difference between Guilan native and Holstein, but the crossbreeding clearly affected on the expression of two genes associated with genetic resistance.

کلیدواژه‌ها [English]

  • Milk somatic cells
  • Guilan native cow
  • Lactoferrin
  • Real-Time PCR
  • TLR4
آیت اللهی م. 1392. مطالعه چندشکلی ژن لاکتوفرین در گاو بومی استان گیلان و آمیخته­های آن با هلشتاین. پایان نامه کارشناسی ارشد، دانشکده علوم کشاورزی، دانشگاه گیلان.
آیت اللهی م.، حسینی مقدم س. ح.، میرحسینی س. ض. و قوی حسین زاده ن. 1394. مطالعه  چندشکلی تک‌نوکلئوتیدی ژن لاکتوفرین و  ارتباط آن با تعداد سلول‌های سوماتیک شیر گاوهای دورگ استان گیلان. تحقیقات تولیدات دامی، 4(2): 94-87 .
قاسمی ز.،  اسلمی نژاد ع. ا.، طهمورث پور م.، رکوعی م و فرجی آروق ه. 1392. برآورد اثرات ژنتیکی، محیطی و فنوتیپی و همبستگی بین صفات تولیدی و نمره سلول­های بدنی گاوهای هلشتاین ایران. مجله دانش و پژوهش علوم دامی، 13: 50-37.
Acuña C. N., Chertcoff R. E., Martínez M. B. and Nimo J. M. 2001. Udder pathogens prevalence in dairy cows from Argentina. 40th Annual Meeting Proceedings of National Mastitis Council, Madison, pp. 177–178.
Aminafshar M., Bahrampour V., Baghizadeh A., Emamjomeh N. and Mohammadabadi M. R. 2014a. Expression of CD44 Gene in Goat’s Oocytes and Embryos. Greener Journal of Biological Sciences, 4(5): 139-145.
Aminafshar M., Bahrampour V., Baghizadeh A., Emamjomeh N. and Mohammadabadi M.R. 2014b. CD44 gene expression in mature, immature oocytes and fetal Kermani, Baluchi sheep and Rayeni, Tali goats. Journal of cell and Animal Biology, 8(8): 156-160.
Arnould V. M., Soyeurt H., Gengler N., Colinet F. G., Georges M. V., Bertozzi C., Portettlle D. and Renaville R. 2009. Genetic analysis of lactoferrin content in bovine milk. Journal of Dairy Science, 92: 2151-2158.
Back P.  and Thomson N. A. 2005. Exploiting cow genotype to increase milk value through production of minor milk components. Proceedings of the New Zealand Society of Animal Production, 65: 53-58.
Barrett D. J., Healy A. M., Leonard F. C. and Doherty M. L. 2005. Prevalence of pathogens causing subclinical mastitis in 15 dairy herds in the Republic of Ireland. Irish Veterinary Journal, 58: 333-337.
Bannerman D. D., Rinaldi M., Vinyard B. T., Laihia J. and Leino L. 2009. Effects of intra mammary infusion of cis-urocanic acid on mastitis-associated inflammation and tissue injury in dairy cows. American Veterinary Research, 70: 373-382.
Burvenich C., Van Merris V., Mehrzad J., Diez-Fraile A. and Duchateau L. 2003. Severity of E. coli mastitis is mainly determined by cow factors. Veterinary Research, 34: 521-564.
Cargill E. J. and Womack J. E. 2007. Detection of polymorphisms in bovine Toll-like receptors 3, 7, 8, and 9. Genomics, 89: 745–755.
Chang J. S., Russell G. C., Jann O., Glass E. J., Werling D. and Haig D. M. 2009. Molecular cloning and characterization of Toll-like receptors 1–10 in sheep. Veterinary Immunology Immunopathology, 127: 94–105.
Farr V. C., Prosser C. G., Clark D. A., Tong M., Cooper C. V., Willix-Payne D. and Davis S. R. 2002. Lactoferrin concentrations is increased in milk from cows milked once-daily. Proceedings of the New Zealand Society of Animal Production, 62: 225-226.
Fonseca I., Silva P. V., Lange C. C. and Guimarães M. F. M. 2009. Expression profile of genes associated with mastitis in dairy cattle. Genetics and Molecular Biology, 32: 776-781.
Fonseca I., Antunes G. R., Paiva D. S., Lange C. C., Guimarães S. E. F and Martins M. F. 2011. Differential expression of genes during mastitis in Holstein-Zebu crossbreed dairy cows. Genetics and Molecular Research, 10(3): 1295-1303.
Griesbeck-Zilch B., Meyer H. H., Kuhn C. H. and Schwerin M. 2008. Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells. Journal of Dairy Science, 91: 2215-2224.
Harmon R. J. 1994. Physiology of mastitis and factors affecting somatic cell counts. Journal of Dairy Science, 77: 103-2112.
Ibeagha-Awemu E. M., Lee J. W., Ibeagha A. E., Bannerman D. D., Paape M. J. and Zhao X. 2008. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells. Veterinary Research, 39: 11
Kharrati koopaei H., Mohammadabadi M. R., Tarang A., Kharrati koopaei M. and Esmailizadeh Koshkoiyeh A. 2012. Study of the association between the allelic variations in DGAT1 gene with mastitis in Iranian Holstein cattle. Modern Genetics Journal, 7(1): 101-104.
Kehrli M. E and Shuster D. E. 1994. Factors affecting milk somatic cells and their role in health of the bovine mammary gland. Journal of Dairy Science, 77:619–627
Leutenegger C. M., Alluwaimi A. M., Smith W. L., Perani L. and Cullor J. S. 2000. Quantitation of bovine cytokine mRNA in milk cells of healthy cattle by real-time TaqMan® polymerasechain reaction. Veterinary Immunology Immunopathology, 77: 275-287.
Lee N. Y., Kawai K.., Nakamura I., Tanaka T., Kumura H. and Shimazaki K.. 2004. Susceptibilities against bovine lactoferrin with microorganisms isolated from mastitic milk. Veterinary Medical Science, 66: 1267-1269.
Livak K. J. and Schmittgen T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆CT method. Methods, 25: 402-408.
Lopez-Villalobos N., Davis S. R., Beattie E. M., Melisa J., Berry S., Holroyd S. E., Spelman R.J. and Snell R. G. 2009. Breed effects for lactoferrin concentration determined by Fourier transform infrared spectroscopy. Proceedings of the New Zealand Society of Animal Production, 69: 60-64.
Molenaar A. J., Kuys Y. M., Davis S. R., Wilkins R. J., Mead P. E. and Tweedie J. W. 1996. Elevation of lactoferrin gene expression in developing, ductal, resting and regressing parenchymal epithelium of the ruminant mammary gland. Journal of Dairy Science, 79: 1198-1208.
Panigrahi M., Arjava S. H. and Bhushan B. 2014. Molecular characterization and expression profile of partial TLR4 gene in association to mastitis in crossbred cattle. Animal Biotechnology, 25(3), 188-199.
Pawlik A., Sender G. and Korwin-Kossakowska A. 2009. Bovine lactoferrin gene polymorphism and expression in relation to mastitis resistance. A review. Animal Science, 27: 263-271.
Pfaffl M. W., Wittmann S. L., Meyer H. H. D. and Bruckmaier R. M. 2003. Gene expression of immunologically important factors in blood cells, milk cells and mammary tissue of cows. Journal of Dairy Science, 86: 538–545.
Riollet C., Rainard P. and Poutrel B. 2000. Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clinical Diagnosis Laboratory Immunology, 7: 161-167.
Roberge C. H., Normandeau E., Einum S., Guderley H. and Bernatchez L. 2008. Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Molecular Ecology, 17: 314-324.
Seabury C. M., Cargill E. J. and Womack J. E. 2007. Sequence variability and protein domain architectures for bovine Toll-like receptors 1, 5, and 10. Genomics, 90: 502–515.
Soyeurt H., Colinet F. G., Arnould V. M. R., Dardenne P., Bertozzi C., Renaville R., Portelle D. and Gengler N. 2007. Genetic variability of lactoferrin content estimated by mid-infrared spectrometry in bovine milk. Journal of Dairy Science, 90: 4443-4450.
Tirumurugaan K. G., Dhanasekaran S., Raj G. D., Raja A., Kumanan K. and Ramaswamy V. 2010. Differential expression of Toll-like receptor mRNA in selected tissues of goat, Capra hircus. Veterinary Immunology and Immunopathology, 133: 296–301.
Tsuji S., Hirata Y., Mukai F. and Ohtagaki S. 1990. Comparison of lactoferrin content in colostrum between different cattle breeds. Journal of Dairy Science, 73: 125-128.
Vangroenweghe F., Duchateau L. and Burvenich C. 2004. Moderate inflammatory reaction during experimental Escherichia coli mastitis in primiparous cows. Journal of Dairy Science, 87: 886–895.
White S. N., Taylor K. H., Abbey C. A., Gill C. A. and Womack J. E. 2003. Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain. Proceedings of the National Academy of Sciences of the United States of America, 100: 10364–10369.
Wickramasinghe S., Hua S., Rincon G., Islas-Trejo A., German J. B., Lebrilla C. B. and Medrano J. F. 2011. Transcriptome profiling of bovine milk oligosaccharide metabolism genes using RNA-Sequencing. PLoS One, 6: e18895.
Wolfs T. G., Buurman W. A., van Schadewijk A., de Vries B., Daemen M. A., Hiemstra P. S. and van’t Veer C. 2002. In vivo expression of Toll-likereceptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. Immunology, 168: 1286–1293.