اثر تغذیه دانه شاهدانه (Cannabis sativa L.) اکسترود شده بر عملکرد، اجزای لاشه، پاسخ ایمنی همورال و الگوی لیپیدی پلاسما در جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تغذیه دام گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند

2 استاد گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند

3 دانشیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند

چکیده

هدف از این تحقیق بررسی اثر تغذیه شاهدانه اکسترود شده بعنوان منبع غنی روغن و پروتئین بر عملکرد، اجزای لاشه و پاسخ ایمنی همورال در جوجه‌های گوشتی بود. در این آزمایش، 250 قطعه جوجه خروس یکروزه گوشتی (سویه راس308) در قالب طرح کاملاً تصادفی در پنج تیمار با پنج تکرار (10 پرنده به ازای هر قفس) توزیع شدند. جیره‌های آزمایشی در قالب سه دوره آغازین (10-1 روزگی)، رشد (24-11 روزگی) و پایانی (42-25 روزگی) مورد استفاده قرار گرفت. تیمارهای آزمایشی عبارت بودند از: 1) جیره شاهد یا بدون شاهدانه اکسترود شده، 2) جیره حاوی 5 درصد شاهدانه اکسترود شده، 3) جیره حاوی 10 درصد شاهدانه اکسترود شده، 4) جیره حاوی 15 درصد شاهدانه اکسترود شده و 5) جیره حاوی 20 درصد شاهدانه اکسترود شده. نتایج این تحقیق نشان داد که استفاده از شاهدانه اکسترود شده تا سطح 20 درصد جایگزینی با سویا، اثر منفی بر وزن بدن، مصرف خوراک و ضریب تبدیل خوراک نداشت. به هرحال، افزودن سطوح بالاتر از 5 درصد شاهدانه اکسترود شده به جیره جوجه‌های گوشتی، وزن نسبی عضله سینه را به طور معنی‌داری کاهش داد (05/0>P). عیار پادتن بر ضد گلبول قرمز گوسفندی و الگوی لیپیدی پلاسمای خون جوجه‌های گوشتی، بجز غلظت LDL ‌خون که در سطوح بالاتر از 5 درصد کاهش یافت (05/0>P)، تا سطح 20 درصد شاهدانه اکسترود شده تغییر معنی‌داری نشان نداد. بنابراین، استفاده از شاهدانه اکسترود شده در تغذیه جوجه گوشتی تا سطح 20 درصد بدون اثر منفی بر عملکرد، پاسخ ایمنی و لیپیدهای خون پرنده توصیه می‌شود. به هرحال، در هنگام استفاده از سطوح بالای شاهدانه اکسترود شده توجه به محتوای لیزین و آرژنین و توازن بین آن­ها برای ممانعت ازکاهش درصد گوشت سینه پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of dietary inclusion of extruded hempseed (Cannabis sativa L.) on performance, carcass components, humoral immune response and plasma lipid profile of broiler chickens

نویسندگان [English]

  • M. Barani 1
  • N. Afzali 2
  • S. J. Hosseini-Vashan 3
1 Ph.D. student, Department of Animal Science, Faculty of Agricultural, University of Birjand, Birjand, Iran
2 Professor, Department of Animal Science, Faculty of Agricultural, University of Birjand, Birjand, Iran
3 Associate professor, Department of Animal Science, Faculty of Agricultural, University of Birjand, Birjand, Iran
چکیده [English]

The aim of this study was to investigate the effect of dietary inclusion of extruded hempseed on performance, carcass components, humoral immune response and plasma lipid profile in broiler chicks. A total of 250 one-day male broiler chicks (Ross 308 strain) were distributed into five treatments in a completely randomized design. Each treatment was replicated five times with 10 birds in each replicate. The experimental treatments were: 1) control diet (no extruded hempseed) and, 2, 3, 4 and 5) diets with 5, 10, 15 and 20% of extruded hempseed, respectively. Dietary inclusion of extruded hempseed up to 20% had no negative effects on body weight gain, feed intake and feed conversion ratio. Extruded hempseed inclusion significantly (P<0.05) decreased the relative weight of breast muscle, but had no significant effect on other carcass parts. Antibody titers against SRBC and plasma lipid profile, with exception for LDL, were not affected by extruded hempseed. Compared to the control group, LDL decreased in response to dietary inclusion of extruded hempseed. Therefore, dietary inclusion of extruded hempseed up to 20% in broilers diets without any undesirable effects on their production performance, lipid profile and immune response is suggested. However, particular attention needs to be given to the dietary content of lysine and arginine and their optimum ratio to prevent   the adverse effect on breast meat.

کلیدواژه‌ها [English]

  • Broiler chicks
  • Plasma lipid
  • Extruded hempseed
  • Performance
  • Immune response
بارانی م.، افضلی ن. و حسینی واشان س. ج. 1395. اثر شاهدانه (Cannabis sativa L.) بر عملکرد، پاسخ ایمنی هومورال، نیمرخ لیپیدی و وضعیت ضداکسیدانی پلاسما در جوجه‌های گوشتی. نشریه علوم دامی، 112: 164-155.
حسینی واشان، س. ج. و غزنوی ط. 1395. تعیین ترکیب شیمیایی  و انرژی قابل متابولیسم پوسته و تفاله دانه انار با استفاده از خروس‌های بالغ. تولیدات دامی، 18(3): 524-513.
شهرامی ا. و شیوازاد م. 1392. تاثیر اعمال فرآیند حرارتی خشک روی دانة کامل سویا بر فعالیت بازدارندة تریپسین، فعالیت آنزیم اوره آز، حلالیت پروتئین در هیدروکسید پتاسیم و عملکرد جوجه‌های گوشتی. مجله پژوهش‌های علوم دامی، 23(4): 127-115.
محمودی م.، فرهومند پ و آذرفر آ. 1391. اثر سطوح مختلف جیره‌ای شاهدانه (Cannabis sativa L.) بر عملکرد، وزن اندام‌های داخلی و میزان کلسترول سرم جوجه‌های گوشتی. فصلنامه گیاهان دارویی، 11 (2): 129-121.
هاشمی ر. و جعفری آهنگرانی، ی. 1384. فراسنجه‌های خونی در طیور. چاپ اول، انتشارات هم میهن، قم،120 ص.
Allan G. L. and Booth M. A. 2004. Effects of extrusion processing on digestibility of peas, lupins, canola meal and soybean meal in silver perch Bidyanusbidyanus (Mitchell) diets. Aquaculture Research, 35: 981-991.
Appendino G., Gibbons S., Giana A., Pgani A., Grassi G. and Starvi M. 2008. Antibacterial cannabinoides from C. sativa: A structure-activity study. Journal of Natural. Products, 71: 1427-1430.
Burel C., Boujard T., Tulli F. and Kaushik S. J. 2000. Digestibility of extruded peas, extruded lupin, and rapeseed meal in rain bow trout (Oncorhynchusmykiss) and turbot (Psetta maxima). Aquaculture, 188: 285-298.
Callaway J. C. 2004. Hempseed as a nutritional resources: A overview. Euphytica, 140: 65-72.
Collier J. and Vallance P. 1989. Second messenger role for NO widens to nervous and immune systems. Trends Pharmacology Science, 10: 427-431.
Cowieson A. J., Acamovic T. and Bedford M. R. 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. British Poultry Science, 45(1): 101–108.
Eriksson M. 2007. Hemp seed cake as a protein feed for growing cattle. MSc. thesis, student report 128. Swedish University of Agricultural Sciences. Department of Animal Environment and health, Skara.
Fortenbery T. R. and Bennett M. 2004. Opportunities for commercial hemp production. Review of Agricultural Economics, 26(1): 97-117.
Friedewald W. T., Levy R. I. and Fredrickson D. S. 1972. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6): 499-502.
Han Y., Parsons C. M. and Hymowitz T. 1991. Nutritinal evaluation of soybean varying in trypsin inhibitor content. Poultry Science, 70: 896-906.
Hassan I. A. G., Elzubeir E. A. and El Tinay A. H. 2003. Growth and apparent absorption of minerals in broiler chicks fed diets with low or high tannin contents. Tropical Animal Health and Production, 35: 189-196.
House J. D., Neufeld J. and Leeson G. 2010. Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. Journal of Food Chemistry, 58: 11801-11807.
Jahanian R. 2009. Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poultry Science, 88: 1818-1824.
Johnson B. J. 2003. Effects of flax and hempseed oils on erythrocyte concentrations of Eicosapentaenoic and Docosahexaenoic acids in vegetarians. MSc. Thesis. University Hawai.
Kalmendal R. 2008. Hemp seed cake fed to broilers. Swedish University of Agricultural Sciences (slu), 9-18.
Karimi I. and Hayatghaibi H. 2007. Hypercholesterolemic effect of drug-type  Cannabis sativa  L. seed (Marijuana seed) in guinea pig. Pakistan Journal of Nutrition, 6(1): 59-62.
Karus M. and Vogt D. 2004. European hemp industry: Cultivation, processing and product lines. Euphytic, 140: 7-12.
Koch J. E. 2001. delta-9-THC stimulates food intake in lewis rats: Effects on chow, high-fat and sweet high fat diets. Pharmacology, Biochemistry and Behavior, 68: 539-543.
Konca Y., Cimen B., Yalcin H., Kaliber M. and BuyukkilicBeyzi S. 2014a. Effect of hempseed (Cannabis sativa sp.) inclusion to the diet on performance, carcass and antioxidative activity in Japanese quail (Coturnixcoturnix japonica). Korean Journal of Food Science, 34(2): 141-150.
Kriese U., Schumann E., Weber W. E., Beyer M., Brühl L. and Matthäus B. 2004. Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica, 137: 339–351.
Krogdahl Å. 1986. Antinutrients affecting digestive functions and performance in poultry. Proceedings of the 7th European Poultry Conference, Paris, France, 239–248.
Labadan M. C. and Austic R. E.  2001. Lysine and arginine requirement of broiler chickens at Two to Three-week intervals to Eight weeks of age. Poultry Science, 80: 599-606.
Leeson S., and Summers J. D. 2001. Nutrition of the chicken. 4th edition. University books, Guelph. Ontario, Canada.
Marsman G., Gruppen H., van der Poel A., Kwakkel R., Verstegen M. and Voragen A. 1997. The effect of thermal processing and enzyme treatments of soybean meal on growth performance, ileal nutrient digestibilities, and chyme characteristics in broiler chicks. Poultry Science, 76: 864-872.
Mensink R. P. and Katan M. B. 1992. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arteriosclerosis and Thrombosis, 12: 911–919.
Mirghelenj S. A., Golian A. G., Kermanshahi H. and Raji A. R. 2013. Nutritional value of wet extruded full-fat soybean and its effects on broiler chicken performance. Journal of Applied Poultry Research, 22 (3): 410-422.
Moran E. T. and Bilgili S. F. 1990. Processing losses carcass quality, and meat yield of broiler chickens receiving diets marginally deficient to adequate in lysine of broiler chickens receiving diets marginally deficient to adequate in lysine prior to marketing. Poultry Science, 69: 702-710.
Nielsen De Almeida F. 2013. Effects of the mailard reactions on chemical composition and amino acids digestibility of feed ingredients and on pig growth performance. Ph.D thesis in animal science. University of Illinois at Urbana-Champaign.
Ravindran V., Cabahug S., Ravindran G. and Bryden W. L. 1999. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poultry Science, 78: 699–706.
Romarheim O. H., Aslaksen M. A., Storebakken T., Krogdah A. and Skrede A. 2005. Effect of extrusion on trypsin inhibitor activity and nutrient digestibility of diets based on fish meal, soybean meal and white flakes. Archives of Animal Nutrition, 59(6): 365-375.
Russo R. and Reggiani R. 2015. Evaluation of protein concentration, amino acid profile and antinutritional compounds in hempseed meal from dioecious and monoecious varieties. American Journal of Plant Sciences, 6: 14-22. http://dx.doi.org/10.4236/ajps.2015.61003
Rutkowski A., Kaczmarek S., Hejdysz M. and Jamroz D. 2016. Effect of extrusion on nutrients digestibility, metabolizable energy and nutritional value of yellow lupine seeds for broiler chickens. Annals of Animal Science, 16(4): 1059-1072.
SAS Institute. 2002. SAS Users Guide: Statistics. SAS Institute Inc., Cary, NC.
Selvaraj R. K. and Cherian G. 2004. Dietary n-3 fatty acids reduce the delayed hypersensitivity reaction and antibody production more than n-6 fatty acids in broiler birds. European Journal of Lipid Science and Technology, 106: 3-10.
Silversides F. G. and LefranÇois M. R. 2005. The effect of feeding hemp seed meal to laying hens. British Poultry Science, 46(2): 231-235.
Sterling K. G., Pesti G. M.  and Bakalli R. I. 2003. Performance of broiler chicks fed various levels of dietary lysine and crude protein. Poultry Science, 82: 1939-1947.
Stratus S. E. 2001. Immunoactive cannabinoids: therapeutic prospects for marijuana constituents. Proceedings of the National Academy of Sciences, 97: 9363–9364.
Sung Y., Hotchkiss J. H., Austic R. E. and Dietert R. R. 1991. L-arginine-dependent production of a reactive nitrogen intermediate by macrophages of a uricotelic species. Journal of Leukocyte Biology, 50: 49-56.
Tang C. H., Ten Z., Wang X. S. and Yang X. Q. 2006. Physicochemical and functional properties of Hemp (Cannabis sativa L.) protein. Journal of Agricultural and Food Chemistry, 54: 8945–8950.
Thompson G. R., Rosenkrantz H., Schaeppi U. H. and Braude M. C. 1973. Comparison of acute oral toxicity of cannabinoids in rats, dogs and monkeys. Toxicology and Applied Pharmacology, 25(3): 363-372.
Viveros A., Ortiz L. T., Rodríguez M. L., Rebolé A., Alzueta C., Arija I., Centeno C. andBrenes A. 2009. Interaction of dietary high oleic acid sunflower hulls and different fat sources in broiler chickens. Poultry Science, 88: 141–151.
Wang X. S., Tang C. H., Yang X. Q. and Gao W. R. 2008 Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis  sativa L.) proteins. Food Chemistry, 107: 11-18.
Yaghobfar A. and Boldaji F. 2002. Influence of level of feed input and procedure on   metabolisable energy and endogenous energy loss (EEL) with adult cockerels. British Poultry Science, 43: 696-704.
Zollitsch W., Wetscherek W. and Lettner F. 1993. Use of differently processed full-fat soybeans in a diet for pig fattening. Animal Feed Science and Technology, 41: 237-246.