بررسی صحت مدل ‏های تک صفتی و چند صفتی ژنومی در حضور اثر متقابل ژنوتیپ و محیط

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه علوم دامی، باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی، واحد آستارا

چکیده

هدف از این تحقیق ارزیابی مدل­های حیوانی مختلف در سناریوهای متفاوت ژنومی جهت برآورد ارزش­‌های اصلاحی ژنومی و تشخیص وجود اثر متقابل ژنوتیپ و محیط (G × E) بود. داده‌­های ژنومی با تراکم‌­های متفاوت جایگاه­های صفات کمّی (100 و 500) و سطوح مختلف عدم تعادل پیوستگی (کم و زیادLD =) با تراکم K10 برای 30 کروموزم شبیه­‌سازی شدند. صفتی در سه محیط مختلف با وراثت­پذیری­­های 10/0، 25/0 و 50/0 روی این ژنوم شبیه­سازی شد. در مرحله بعد، همبستگی ژنتیکی ضعیف (47/0) و قوی‌ (83/0)  بین محیط سه (50/0h2=) با محیط­های یک (10/0h2=) و دو (25/0h2=) ایجاد شد. نتایج نشان داد صحت پیش­بینی ژنومی با افزایش هر یک از عوامل سطح LD ، وراثت­پذیری و همبستگی ژنتیکی بین صفات افزایش یافت. استفاده از مدل چند صفتی نسبت به مدل تک صفتی باعث افزایش صحت پیش­‌بینی ژنومی شد. صحت پیش­­بینی­های ژنومی هنگامی که ارزش های اصلاحی ژنومی حیوانات محیط سوم با استفاده از اطلاعات ژنومی خویشاوندانشان در محیط دوم برآورد شد بالاتر بود و بیش­ترین صحت پیش­بینی ژنومی (422/0) برای سناریو با تعداد پایین QTL و عدم تعادل پیوستگی بالا مشاهده شد. همچنین، با افزایش درصد حیوانات از 25 به 75 درصد، صحت پیش­بینی ژنومی افزایش یافت. به طور کلی در صورت وجود اثر متقابل G × E، سطح LD، نوع حیوانات موجود در جمعیت مرجع و همبستگی ژنتیکی بین محیط­های مختلف نقش مهمی را ایفا می­کنند. در نتیجه می­توان بیان کرد که با لحاظ کردن اثر متقابل ژنوتیپ و محیط، صحت پیش­­بینی ژنومی بیشتر و فهم بهتری از تنوع ژنتیکی صفات کمّی حاصل می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the genomic accuracy of single-trait and multiple-trait animal models in the presence of interaction between genotype and environment

نویسنده [English]

  • Y. Naderi
Assistant professor, Department of Animal Science, Young Researchers Club, Islamic Azad University, Astara Branch, Astara, Iran
چکیده [English]

The objective of this study was to evaluate different animal models in different genomic scenarios to estimate the breeding values and to detect genotype × environment (G × E) interaction. Genomic data were simulated to reflect variations in number of QTL (100 and 500) and linkage disequilibrium (low and high) using 10K SNP panel for 30 chromosomes. On this genome, the trait simulated in three different environments with heritabilities 0.10, 0.25 and 0.50, respectively. In the next phase, low (0.47) and high (0.83) genetic correlations were assigned between third environment (h2=0.50) with first (h2=0.10) and second (h2=0.25) environments. The results indicated that the accuracy of genomic prediction increased with increasing the heritability, linkage disequilibrium and the genetic correlation between the traits. Comparing to single trait animal model, multiple trait animal model increased accuracy of genomic prediction. Accuracies of genomic predictions were generally high when the genomic breeding values of third environment were estimated using information of their relatives in the second environment, and the highest accuracy (0.422) obtained from the scenario with high linkage disequilibrium and low QTL. Also, accuracies of genomic prediction increased with increasing percentage of animals from 25 to 75. Generally, the level of LD, type of animals in training set, number of phenotypic records in validation set and genetic correlation across environments play important roles if G × E interaction exists. In conclusion, considering the G × E interaction contributes to understanding variations of quantitative trait and increasing accuracy of genomic prediction.

کلیدواژه‌ها [English]

  • Simulation
  • Accuracy of genomic prediction
  • Linkage disequilibrium
  • Animal model
  • Genetic correlation
Aguilar I., Misztal I., Legarra A. and Tsuruta S. 2011. Efficient computation of the genomic relationship matrix and other matrices used in single‐step evaluation. Journal of Animal Breeding and Genetics, 128(6): 422-428.
Aguilar I., Misztal I. and Tsuruta S. 2010. Genetic trends of milk yield under heat stress for US Holsteins. Journal of Dairy Science, 93(4): 1754-1758.
Atefi A., Shadparvar A. A. and Ghavi Hossein-Zadeh N. 2016. Comparison of whole genome prediction accuracy across generations using parametric and semi parametric methods. Acta Scientiarum. Animal Sciences, 38(4): 447-453.
Bastiaansen J., Bovenhuis H., Lopes M., Silva F., Megens H. and Calus M. 2014. SNP effects depend on genetic and environmental context, In: Proceedings of the 10th World congress on genetics applied to livestock production, pp. 356-356.
Bo Z., Zhang J. J., Hong N., Long G., Peng G., Xu L. Y., Yan C., Zhang L. P., Gao H. J. and Xue G. 2017. Effects of marker density and minor allele frequency on genomic prediction for growth traits in Chinese Simmental beef cattle. Journal of Integrative Agriculture, 16(4): 911-920.
Bohlouli M., Alijani S., Nejati-Javaremi A. N., König S. and Yin T. 2017. Genomic prediction by considering genotype× environment interaction using different genomic architectures. Annals of Animal Science, 17: 683-701.
Bohlouli M., Shodja J., Alijani S. and Pirany N. 2014. Interaction between genotype and geographical region for milk production traits of Iranian Holstein dairy cattle. Livestock Science, 169: 1-9.
Bohmanova J., Misztal I., Tsuruta S., Norman H. and Lawlor T. 2008. Genotype by environment interaction due to heat stress. Journal of Dairy Science, 91(2): 840-846.
Brügemann K., Gernand E., Von Borstel U. and König S. 2011. Genetic analyses of protein yield in dairy cows applying random regression models with time-dependent and temperature x humidity-dependent covariates. Journal of Dairy Science, 94(8): 4129-4139.
Calus M., De Haas Y., Pszczola M. and Veerkamp R. 2013. Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Animal, 7(2): 183-191.
Calus M. P. and Veerkamp R. F. 2011. Accuracy of multi-trait genomic selection using different methods. Genetics Selection Evolution, 43(1): 26.
Clark S. A., Hickey J. M. and Van der Werf J. H. 2011. Different models of genetic variation and their effect on genomic evaluation. Genetics Selection Evolution, 43(1): 18.
Daetwyler H., Hickey J., Henshall J., Dominik S., Gredler B., Van der Werf J. and Hayes B. 2010. Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population. Animal Production Science, 50(12): 1004-1010.
De Roos A., Harbers A. and De Jong G. 2004. Random herd curves in a test-day model for milk, fat, and protein production of dairy cattle in the Netherlands. Journal of Dairy Science, 87(8): 2693-2701.
Dekkers J. C. 2010. Animal genomics and genomic selection. Adapting animal production to changes for a growing human population, In: Proceedings of International Conference, Lleida, Spain. Citeseer, pp. 61-71.
Goddard M. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 136(2): 245-257.
Guo G., Zhao F., Wang Y., Zhang Y., Du L. and Su G. 2014. Comparison of single-trait and multiple-trait genomic prediction models. BMC Genetics, 15(1): 30.
Haile-Mariam M., Pryce J., Schrooten C. and Hayes B. 2015. Including overseas performance information in genomic evaluations of Australian dairy cattle. Journal of Dairy Science, 98(5): 3443-3459.
Hammami H., Rekik B., Bastin C., Soyeurt H., Bormann J., Stoll J. and Gengler N. 2009. Environmental sensitivity for milk yield in Luxembourg and Tunisian Holsteins by herd management level. Journal of Dairy Science, 92(9): 4604-4612.
Hayashi T. and Iwata H. 2013. A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits. BMC Bioinformatics, 14(1): 34.
Hayes B. J., Bowman P. J., Chamberlain A. J., Savin K., Van Tassell C. P., Sonstegard T. S. and Goddard M. E. 2009. A validated genome wide association study to breed cattle adapted to an environment altered by climate change. PloS One, 4(8): e6676.
Hayes B. J., Daetwyler H. D. and Goddard M. E. 2016. Models for genome× environment interaction: Examples in livestock. Crop Science, 56(5): 2251-2259.
Jónás D., Ducrocq V. and Croiseau P. 2017. The combined use of linkage disequilibrium–based haploblocks and allele frequency–based haplotype selection methods enhances genomic evaluation accuracy in dairy cattle. Journal of Dairy Science, 100(4): 2905-2908.
Ke X., Hunt S., Tapper W., Lawrence R., Stavrides G., Ghori J., Whittaker P., Collins A., Morris A. P. and Bentley D. 2004. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Human Molecular Genetics, 13(6): 577-588.
Kolver E., Roche J., De Veth M., Thorne P. and Napper A. 2002. Total mixed ration versus pasture diets: Evidence of a genotype x diet interaction. New Zealand Society of Animal Production, 62: 246-251.
Lillehammer M., Hayes B. and Goddard M. 2009. Gene by environment interactions for production traits in Australian dairy cattle. Journal of Dairy Science, 92(8): 4008-4017.
Lillehammer M., Ødegård J. and Meuwissen T. H. 2007. Random regression models for detection of gene by environment interaction. Genetics Selection Evolution, 39(2): 105.
Meuwissen T. and Goddard M. 1996. The use of marker haplotypes in animal breeding schemes. Genetics Selection Evolution, 28(2): 161.
Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T. and Lee D. 2002. BLUPF90 and related programs (BGF90), In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production August. 19-23 Montpellier France, pp. 1-3.
Naderi S., Yin T. and König S. 2016. Random forest estimation of genomic breeding values for disease susceptibility over different disease incidences and genomic architectures in simulated cow calibration groups. Journal of Dairy Science, 99(9): 7261-7273.
Nguyen T. T., Bowman P. J., Haile-Mariam M., Pryce J. E. and Hayes B. J. 2016. Genomic selection for tolerance to heat stress in Australian dairy cattle. Journal of Dairy Science, 99(4): 2849-2862.
Pimentel E. C., Wensch-Dorendorf M., König S. and Swalve H. H. 2013. Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genetics Selection Evolution, 45(1): 12.
Sargolzaei M. and Schenkel F. S. 2009. QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25(5): 680-681.
Schaeffer L. 2006. Strategy for applying genome‐wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123(4): 218-223.
Solberg T., Sonesson A. and Woolliams J. 2008. Genomic selection using different marker types and densities. Journal of Animal Science, 86(10): 2447-2454.
Streit M., Reinhardt F., Thaller G. and Bennewitz J. 2013. Genome-wide association analysis to identify genotype× environment interaction for milk protein yield and level of somatic cell score as environmental descriptors in German Holsteins. Journal of Dairy Science, 96(11): 7318-7324.
Sun X., Fernando R. and Dekkers J. 2016. Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction. Genetics Selection Evolution, 48(1): 77.
Villumsen T., Janss L. and Lund M. 2009. The importance of haplotype length and heritability using genomic selection in dairy cattle. Journal of Animal Breeding and Genetics, 126(1): 3-13.
Wang Q., Yu Y., Yuan J., Zhang X., Huang H., Li F. and Xiang J. 2017. Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei. BMC Genetics, 18(1): 45.
Wientjes Y. C., Calus M. P., Goddard M. E. and Hayes B. J. 2015. Impact of QTL properties on the accuracy of multi-breed genomic prediction. Genetics Selection Evolution, 47(1): 42.
Williams J., Bertrand J., Misztal I. and Łukaszewicz M. 2012. Genotype by environment interaction for growth due to altitude in United States Angus cattle. Journal of Animal Science, 90(7): 2152-2158.
Yin T., Pimentel E., Borstel U. K. V. and König S. 2014. Strategy for the simulation and analysis of longitudinal phenotypic and genomic data in the context of a temperature× humidity-dependent covariate. Journal of Dairy Science, 97(4): 2444-2454.