مدل‌سازی انرژی ستانده در واحدهای پرورش گاو شیری و گاو پرواری با استفاده از روش‌های شبکه عصبی مصنوعی و انفیس (مطالعه موردی: استان مازندران، ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی، گروه ماشین های کشاورزی، آموزشکده کشاورزی ساری، دانشگاه فنی و حرفه‌ای، مازندران، ایران

2 دانشیار گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

3 عضو هیات علمی، گروه علوم دامی، آموزشکده کشاورزی ساری، دانشگاه فنی و حرفه‌ای، مازندران، ایران

چکیده

در این پژوهش شبکه عصبی مصنوعی و سامانه استنتاج عصبی-فازی تطبیقی چندلایه (انفیس)، برای مدل­سازی انرژی خروجی در واحدهای پرورش گاو شیری و گاو پرواری مورد مطالعه قرار گرفتند. برای این منظور، مطابق رابطه کوکران، تعداد 105 واحد پرورش گاو پرواری و گاو شیری به طور تصادفی از پنج شهرستانی که عمده‌ترین تولیدکننده این بخش در استان مازندران بودند، در سال­های 1395 تا 1396 انتخاب شدند. با استفاده از تراز انرژی نهاده‌ها و ستانده‌ها، میانگین انرژی نهاده و ستانده برای هر رأس گاو در واحدهای پرورش گاو پرواری به ‌ترتیب برابر 76/16994 و 85/3449 مگاژول و برای واحدهای پرورش گاو شیری به ترتیب برابر 100100 و 58277 مگاژول محاسبه شد. همچنین شاخص‌های نسبت انرژی، بهره‌وری انرژی، انرژی ویژه و افزوده خالص انرژی برای هر رأس گاو در واحدهای گاو شیری به ‎ترتیب برابر 58/0، 08/0 کیلوگرم بر مگاژول، 5/12 مگاژول بر کیلوگرم و 93/41825- مگاژول و برای واحدهای گاو پرواری به‌ ترتیب برابر 2/0، 02/0 کیلوگرم بر مگاژول، 50 مگاژول بر کیلوگرم و 91/13544- مگاژول بود. با استفاده از نتایج تحلیل آماری داده‌ها، مدل‌سازی میزان انرژی خروجی به ازای انرژی ورودی با استفاده از روش‌های هوش مصنوعی و استنتاج عصبی-فازی انجام گرفت. نتایج نشان داد مدل سامانه استنتاج عصبی-فازی تطبیقی چندلایه با ضریب تشخیص 9899/0 برای واحدهای پرورش گاو پرواری و 9933/0 برای واحدهای پرورش گاو شیری نسبت به مدل ساخته شده با استفاده از شبکه عصبی مصنوعی با ضریب تشخیص 8118/0 و ساختار 1-16-6 برای واحدهای پرورش گاو پرواری و ضریب تشخیص 9837/0 و ساختار 1-12-5 برای واحدهای پرورش گاو شیری دارای عملکرد و دقت بهتری بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling output energy in the dairy and beef cattle farms using the methods of Artificial Neural Network and ANFIS (Case Study: Mazandaran Province, Iran)

نویسندگان [English]

  • R. Loghmanpour zarini 1
  • N. Ghavi Hossein-Zadeh 2
  • H. Nabipour Afrouzi 3
1 Academic Staff, Department of Agricultural Machinery, Agricultural College of Sari, Technical and Vocational University, Mazandaran, Iran
2 Associate Professor, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Academic Staff, Department of Animal Science, Agricultural College of Sari, Technical and Vocational University, Mazandaran, Iran
چکیده [English]

In this research, the artificial neural networks (ANNs) and multi-layered non-fuzzy inductive inference system (ANFIS) were used to model the output energy in dairy and beef cattle farms. For this purpose, according to Cochran's relation, 105 beef and dairy farms were randomly selected from five townships which were the main producers of this sector in Mazandaran province from 2016-2017. Using the energy balance of inputs and outputs, the input and output energy averages in beef production farms were calculated to be 16994.76 and 3449.85 MJcow-1 and for dairy production farms were equal to 100100 and 58277 MJcow-1, respectively. Also, ER (Energy Ratio), EP (Energy Productivity), SE (Special Energy) and NE (Net Energy) indices for dairy production farms were 0.58, 0.08 KgMJ-1, 12.5 MJKg-1 and -41825.93 MJcow-1, respectively and for beef production farms were calculated as 0.2, 0.02 KgMJ-1, 50 MJKg-1and 13544.91 MJcow-1, respectively. Using the results of statistical analysis of the data, modeling of the output energy for each unit of input energy was performed by two above methods (ANNs and ANFIS). The results showed that the model of nervous- fuzzy inference comparative multi-layered system with the correlation coefficient of 0.9899 for steer farms and 0.9933 for dairy farms, had better performance and accuracy than that of the artificial neural network with the correlation coefficient of 0.8118 and the structure of 6-16-1 for beef farms and correlation coefficient of 0.9837 and the structure of 5-12-1 for dairy farms.

کلیدواژه‌ها [English]

  • Energy
  • Adaptive fuzzy neural network
  • Artificial neural network
  • Dairy cattle
  • Modeling
بی نام. 1396. چکیده نتایج آمارگیری از گاوداری صنعتی کشور. مرکز آمار ایران. معاونت برنامه ریزی و نظارت راهبردی ریاست جمهوری.
سلطانعلی ح.، عمادی ب.، روحانی ع. و خجسته­­پور م. 1393. مدل­سازی روند انرژی مصرفی و انتشار گازهای گلخانه­ای در واحدهای صنعتی پرورش گاو شیری مطالعه موردی: استان گیلان. پژوهش در نشخوارکنندگان، 2(4): 193-175.
صیادی الف. 1387. آشنایی مقدماتی با شبکه‌های عصبی مصنوعی.انتشارات دانشگاه صنعتی شریف.
عمید س. و مصری گندشمین ت. 1395. مدل‌سازی راندمان انرژی در تولید مرغ گوشتی به کمک رویکرد شبکه‌های عصبی مصنوعی پرسپترون (مطالعه موردی: استان اردبیل). تحقیقات تولیدات دامی، 5(2): 85-73.
لقمانپور زرینی ر. و اکرم الف. 1396. بررسی بهره‌وری انرژی در فرآیند تولید خیار گلخانه‌ای (مطالعه موردی: استان مازندران). کنفرانس ملی تولیدات زراعی و باغی، 5 بهمن، دانشگاه گنبد کاووس، گنبد گاووس، گلستان، ایران.
نبی‌پور افروزی ح.، عابدی فیروزجایی ر. و لقمانپور زرینی ر. 1395. محاسبه شاخص‌های مصرف انرژی و انتشار گازهای گلخانه‌ای در سالن های پرورش گاو شیری (مطالعه موردی: استان اصفهان). اولین همایش ملی یافته های نوین در علوم کشاورزی محیط زیست و منابع طبیعی پایدار، 15 و 16 مهر، تهران، ایران.
Basarir A. 2003. Goals of Beef Cattle and Dairy Producers: A Comparison of the Fuzzy Pair -Wise Method and Simple Ranking Procedure.Annual Meeting Mobile.Agricultural Economics Association.
Cochran W. 1977. Sampling techniques. 3rd ed. New York: John Wiley and Sons.
Coley D. A., Goodliffe E. and Macdiarmid J. 1998. The embodied energy of food: the role of diet. Energy Policy, 26(6): 455-465.
Frorip J., Kokin E., Praks J., Poikalainen V., Ruus A., Veermäe I. and Ahokas J. 2012. Energy consumption in animal production-case farm study. Agronomy Research Biosystem Engineering, 1: 39-48.
Grzesiak W., Błaszczyk P. and Lacroix R. 2006. Methods of predicting milk yield in dairy cows—Predictive capabilities of Wood's lactation curve and artificial neural networks (ANNs). Computers and Electronics in Agriculture, 54(2): 69-83.
Heidari M. D., Omid M. and Akram A. 2011. Energy efficiency and econometric analysis of broiler production farms. Energy, 36(11): 6536-6541.
Hosoz M., Ertunc H. M., Karabektas M. and Ergen G. 2013. ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends. Applied Thermal Engineering, 60(1): 24-32.
Kiefer L. R., Menzel F. and Bahrs E. 2015. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms. Journal of Environmental Management, 152: 11-18.
Kitani O. 1999. CIGR Handbook of Agricultural Engineering. Energy and Biomass Engineering, Vol. 5. ASAE publication, St Joseph.
Loghmanpour zarini R., Ghasemi H. and Mahdavi darvari S. H. 2014. Energy consumption and economic analysis of mustard production in Iran. International Journal of Life Sciences, 8(6): 345-354.
Meul M., Nevens F., Reheul D. and Hofman G. 2007. Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agriculture, Ecosystems & Environment, 119(1): 135-144.
Moitzi G., Daniela D. A. M. M., Weingartmann H. and Boxberger J. 2010. Analysis of energy intensity in selected Austrian dairy farms with focus on concentrate level in feeding. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca.Agriculture, 67(1).
Ozkan B., Akcaoz H. and Fert C. 2004.Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1): 39-5.
Safa M. and Samarasinghe S. 2011. Determination and modelling of energy consumption in wheat production using neural networks: A case study in Canterbury province, New Zealand. Energy, 36(8): 5140-5147.
Sainz R. D. 2003. Livestock-environment initiative fossil fuels component: framework for calculation fossil fuel use in livestock systems. http://www.fao.org/WAIRDOCS/LEAD/X6100E/x6100e00.htm#Contents.
Sefeedpari P., Rafiee S. H., Akram A. and Mousavi-Avval S. H. 2012. Application of fuzzy data envelopment analysis for ranking dairy farms in the view of energy efficiency. Journal of Animal Production Advances,  2(6): 284-296.
Sefeedpari P., Rafie S., Akram A. and Komleh S. H. 2014. Modeling output energy based on fossil fuels and electricity energy consumption on dairy farms of Iran: Application of adaptive neural-fuzzy inference system technique. Computers and Electronics in Agriculture, 109: 80-85.
Singh S. and Mittal J. P. 1992. Energy in production agriculture. Mittal pub. New Delhi.
StatSoft Inc. 2004. Electronic Statistics Textbook (Tulsa, OK).
Wells D. 2001. Total energy indicators of agricultural sustainability: dairy farming case study. Technical paper. Ministry of Agriculture and Forestry, Wellington. ISBN: 0-478-07968-0.