اثر متقابل تزریق انسولین و القای ورم پستان با لیپوپلی‎ساکارید بر سوخت و ساز گلوکز و ترشح هورمون گلوکاگون در گاوهای شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم دامی دانشکده کشاورزی دانشگاه یاسوج

2 محقق گروه علوم دامی، گاو شیری و دامپزشکی دانشگاه ایالتی یوتا آمریکا

3 استاد گروه فیزیولوژی دامپزشکی دانشگاه برن سوئیس

چکیده

انسولین
و گلوکاگون هورمون‎های تنظیم­کننده سوخت و ساز گلوکز هستند که هنگام بروز التهاب، ترشح
آن‎ها برای تنظیم گلوکز خون تغییر می‎نماید. چالش داخل پستانی لیپوپلی‌ساکارید (LPS) سبب بروز پاسخ‎های سیستم ایمنی می‌شود که با تغییر فراسنجه­های
خونی و تغییر در سیستم هورمونی همراه است. هدف از این پژوهش، بررسی اثر چالش داخل
پستانی LPS به همراه افزایش غلظت انسولین در دو وضعیت هایپوگلایسمی و
یوگلایسمی بر غلظت هورمون گلوکاگون در گاوهای شیری بود. تعداد 19 رأس گاو هلشتاین با شکم زایش 1/0 ± 0/3 (انحراف ­معیار ± میانگین) به سه گروه تیماری شامل تزریق انسولین (هایپوگلایسمی) (6n=؛ HypoG)، تزریق انسولین همراه گلوکز (5n=؛ EuG)، و تزریق سرم فیزیولوژی (NaCl 9/0%) به ‌عنوان
گروه شاهد (8n=؛ Control) اختصاص یافتند. تزریق‎ها به
مدت 56 ساعت انجام گرفت. در ساعت 48 ام تزریق متابولیت‎ها، LPS به دو کارتیه
پستانی تزریق شد. در پاسخ به چالش LPS، غلظت انسولین و گلوکز پلاسما افزایش داشت. چالش داخل
پستانی LPS غلظت هورمون
گلوکاگون را در گروه‎های HypoG و شاهد نسبت به
گروه EuG  و همچنین نسبت به پیش از شروع تزریقات و قبل از
چالش LPS افزایش
داد. به ‌طور کلی چالش داخل پستانی LPS سبب افزایش غلظت گلوکز، انسولین و گلوکاگون شد.
نتایج حاصل نشان داد که غلظت گلوکاگون هنگام تحریک سیستم ایمنی حتی با افزایش غلظت
انسولین افزایش یافته و نقش آن در هموستازی سوخت و ساز گلوکز هنگام بروز التهابات
در گاو شیری اهمیت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Interaction effect of insulin infusion and induced mastitis by lipopolysaccharide on glucose metabolism and glucagon hormone secretion in dairy cows

نویسندگان [English]

  • M. Zarrin 1
  • A. Ahmadpour 2
  • R. Bruckmaier 3
1 Assistant Professor, Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
2 Researcher in Department of Animal, Dairy and Veterinary Sciences, Utah State University, UT 84322, USA
3 Professor, Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
چکیده [English]

Insulin and glucagon are glucoregulatory hormones which their secretions are critical for glucose hemostasis during inflammations. Intra-mammary LPS (lipopolysaccharide) challenge causes an immune reaction which is accompanied by metabolic and endocrine changes. The objective of the present study was to investigate the effects of intra-mammary LPS challenge concomitantly with elevated insulin concentrations on glucagon concentration during simultaneous hypoglycemia or euglycemia in dairy cows. Nineteen Holstein dairy cows with body weight of 3.0 ± 0.1 (mean ± SD) were randomly assigned to three treatment groups: an intravenous insulin infusion (Hypoglycemia; HypoG, n=5), insulin and glucose infusion (EuG, n=6), and a 0.9 % saline solution infusion (Control, n=8). At 48 h of metabolites infusions, LPS injected to two quarters of mammary glands. In response to LPS challenge, plasma insulin and glucose concentration increased. Intra-mammary LPS challenge caused an increase in plasma glucagon concentrations in HypoG and control compared to EuG group, pre infusion level, and pre LPS challenge. In conclusion, intra-mammary LPS challenge induced increases of glucose, insulin, and glucagon concentrations. The results showed that glucagon concentrations increased during immune system stimulation despite the increase of insulin concentrations, and its role is important in glucose metabolism hemostasis during inflammation.

کلیدواژه‌ها [English]

  • Inflammation
  • Insulin
  • Glucagon
  • Glucose
  • Lipopolysaccharide
زرین م.، بروکمایر ر.، و احمدپور ا. 1397. اثر دستکاری متابولیت‎ها و هورمون‎ها بر بیان mRNA ژن‎های آنتی‎اکسیدانی مرتبط با Nrf2 در بافت پستانی گاوهای شیری. تحقیقات تولیدات دامی. 7(3): 1-12.
Aleri J. W., Hine B. C., Pyman M. F., Mansell P. D., Wales W. J., Mallard B. and Fisher A. D. 2016. Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period. Research in Veterinary Science, 108: 8-17.
Banarer S., McGregor V. P. and Cryer P. E. 2002. Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response. Diabetes, 51: 958-965.
Bansal P. and Wang Q. 2008. Insulin as a physiological modulator of glucagon secretion. American Journal of Physiology-Endocrinology and Metabolism, 295: E751-E761.
Bell A. W. 1995. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science, 73: 2804-2819.
Bruckmaier R. M., Schällibaum M. and Blum J. W. 1993. Escherichia coli endotoxin-induced mastitis in dairy cows: Changes and importance of insulin-like growth factor I and oxytocin. Milchwissenschaft, 48: 374-378.
Burcelin R. and Thorens B. 2001. Evidence that extrapancreatic GLUT2-dependent glucose sensors control glucagon secretion. Diabetes, 50: 1282-1289.
Burton J. L. and Erskine R. J. 2003. Immunity and mastitis. Some new ideas for an old disease. The Veterinary Clinics Food Animal Practice, 19: 1-45.
Danfaer A. 1994. Nutrient metabolism and utilization in the liver. Livestock Production Science, 34: 115-127.
Drackley J. K., Overton T. R. and Douglas G. N. 2001. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. Journal of Dairy Science, 84: E100-E112.
Ferrannini E., Galvan A. Q., Gastaldelli A., Camastra S., Sironi A. M., Toschi E. and Nannipieri M. 1999. Insulin: new roles for an ancient hormone. European Journal of Clinical Investigation, 29(10): 842-852.
Goff J. P. 2006. Major advances in our understanding of nutritional influences on bovine health. Journal of Dairy Science, 89(4): 1292-1301.
Gross J. J., Grossen‐Rösti L., Héritier R., Tröscher A. and Bruckmaier R. M. 2018. Inflammatory and metabolic responses to an intramammary lipopolysaccharide challenge in early lactating cows supplemented with conjugated linoleic acid. Journal of Animal Physiology and Animal Nutrition, 102(2): e838-e848.
Gross J., van Dorland H. A., Bruckmaier R. M. and Schwarz F. J. 2011. Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. Journal of Dairy Science, 94: 1820-1830.
Gustavson S. M., Nishizawa M., Farmer B., Neal D., Brissova M., Powers A. C. and Cherrington A. D. 2003. A fall in portal vein insulin does not cause the alpha-cell response to mild, non-insulin-induced hypoglycemia in conscious dogs. Metabolism, 52(11): 1418-1425.
Hanigan M. D., Crompton L. A., Metcalf J. A. and France J. 2001. Modelling mammary metabolism in the dairy cow to predict milk constituent yield, with emphasis on amino acid metabolism and milk protein production: Model construction. Journal of Theoretical Biology, 213: 223-239.
Hoeben D., Burvenich C., Trevisi E., Bertoni G., Hamann J., Bruckmaier R. M. and Blum J. W. 2000. Role of endotoxin and TNF-alpha in the pathogenesis of experimentally induced coliform mastitis in periparturient cows. Journal of Dairy Research, 67: 503-551.
Hope K. M., Tran P. O. T., Zhou H., Oseid E., Leroy E. and Robertson R. P. 2004. Regulation of α-cell function by the β-Cell in isolated human and rat islets deprived of glucose: the “Switch-off” hypothesis. Diabetes, 53: 1488-1495.
Ingvartsen K. L. and Moyes K. 2013. Nutrition, immune function and health of dairy cattle. Animal, 7(Suppl 1): 112-122.
Ingvartsen K. L. and Moyes K. M. 2015. Factors contributing to immunosuppression in the dairy cow during the periparturient period. Japanese Journal of Veterinary Research, 63(Suppl. 1): S15-S24.
Jiang G. and Zhang B. B. 2003. Glucagon and regulation of glucose metabolism. American Journal of Physiology-Endocrinology and Metabolism, 284: E671-E678.
Kaneene J. B., Miller R., Herdt T. H. and Gardiner J. C. 1997. The association of serum nonesterified fatty acids and cholesterol, management and feeding practices with peripartum disease in dairy cows. Preventive Veterinary Medicine, 31: 59-72.
Kreipe L., Vernay M. C. M. B., Oppliger A., Wellnitz O., Bruckmaier R. M. and van Dorland H. A. 2011. Induced hypoglycemia for 48 hours indicates differential glucose and insulin effects on liver metabolism in dairy cows. Journal of Dairy Science, 94: 5435-5448.
Maruyama H., Hisatomi A., Orci L., Grodsky G. M. and Unger R. H. 1984. Insulin within islets is a physiologic glucagon release inhibitor. Journal of Clinical Investigation, 74: 2296-2299.
Saltiel A. R. and Kahn C. R. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414: 799-806.
Schmitz S., Pfaffl M. W., Meyer H. H. D. and Bruckmaier R. M. 2004. Short-term changes of mRNA abundance of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domestic Animal Endocrinology, 26: 111-126.
Trevisi. E. R. M. I. N. I. O., Amadori M., Cogrossi S. I. M. O. N. E., Razzuoli E. and Bertoni G. 2012. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Research in Veterinary Science, 93: 695-704.
Unger R. H. and Orci L. 1976. Physiology and pathophysiology of glucagon. Physiological Reviews, 56: 778-826.
van Dorland H. A., Richter S., Morel I., Doherr M. G., Castro N. and Bruckmaier R. M. 2009. Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy cows. Journal of Dairy Science, 92: 1924-1940.‌
Van Knegsel A. T., Hammon H. M., Bernabucci U., Bertoni G., Bruckmaier R. M., Goselink R. M., Gross J. J., Kuhla B., Metges C. C., Parmentier H. K. and Trevisi E. 2014. Metabolic adaptation during early lactation: key to cow health, longevity and a sustainable dairy production chain. CAB Reviews, 9(002): 1-15.
Vernay M. C. M. B., Wellnitz O., Kreipe L., van Dorland H. A. and Bruckmaier R. M. 2012. Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows. Journal of Dairy Science, 95: 2540-2549.‌
Vicari T., Van den Borne J. J. G. C., Gerrits W. J. J., Zbinden Y. and Blum J. W. 2008. Postprandial blood hormone and metabolite concentrations influenced by feeding frequency and feeding level in veal calves. Domestic Animal Endocrinology, 34(1): 74-88.
Waldron M. R., Kulick A. E., Bell A. W. and Overton T. R. 2006. Acute experimental mastitis is not causal toward the development of energy-related metabolic disorders in early postpartum dairy cows. Journal of Dairy Science, 89: 596-610.
Wellnitz O. and Bruckmaier R. M. 2012. The innate immune response of the bovine mammary gland to bacterial infection. The Veterinary Journal, 192: 148-152.
Zarrin M., De Matteis L., Vernay M. C. M. B., Wellnitz O., van Dorland H. A. and Bruckmaier R. M. 2013. Long-term elevation of β-hydroxybutyrate in dairy cows through infusion: Effects on feed intake, milk production, and metabolism. Journal of Dairy Science, 96: 2960-2972.‌
Zarrin M., Grossen-Rösti L., Bruckmaier R. M. and Gross J. J. 2017. Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition. Journal of Dairy Science, 100: 2323-2333.
Zarrin M., Wellnitz O. and Bruckmaier R. M. 2015. Conjoint regulation of glucagon concentrations via plasma insulin and glucose in dairy cows. Domestic Animal Endocrinology, 51: 74-77.
Zarrin M., Wellnitz O., van Dorland H. A. and Bruckmaier R. M. 2014. Induced hyperketonemia affects the mammary immune response during lipopolysaccharide challenge in dairy cows. Journal of Dairy Science, 97: 330-339.‌
Zarrin M., Wellnitz O., van Dorland H. A., Gross J. J. and Bruckmaier R. M. 2014. Hyperketonemia during lipopolysaccharide-induced mastitis affects systemic and local intramammary metabolism in dairy cows. Journal of Dairy Science, 97(6): 3531-3541.