اثر افزودن سطوح مختلف سولفات، کیلات و نانو روی به جیره بر عملکرد، ذخیره روی در بافت‌ها و کیفیت گوشت بلدرچین ژاپنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل

چکیده

به منظور بررسی آثار افزودن سطوح مختلف سولفات، کیلات و نانو روی به جیره بر عملکرد، ذخیره روی در بافت‌ها و کیفت گوشت بلدرچین ژاپنی، آزمایشی با تعداد 400 قطعه بلدرچین جنس نر در قالب طرح کاملاً تصادفی با 10 تیمار آزمایشی و چهار تکرار انجام شد. تیمارهای آزمایشی شامل جیره پایه حاوی 25/41 میلی­گرم بر کیلوگرم روی و فاقد مکمل روی (شاهد)، جیره پایه مکمل شده با سولفات روی در سه سطح 15، 25 و 35 میلی‌گرم در کیلوگرم، جیره پایه مکمل شده با کیلات روی در سه سطح 15، 25 و 35 میلی‌گرم در کیلوگرم و جیره پایه مکمل شده با نانو روی در سه سطح 15، 25 و 35 میلی‌گرم در کیلوگرم بودند. پرندگان تغذیه شده با جیره پایه + 25 میلی‌گرم در کیلوگرم کیلات روی دارای مصرف خوراک کمتر، افزایش وزن بیشتر و ضریب تبدیل خوراک بهتری نسبت به گروه شاهد بودند (05/0>p ). در مقایسه با گروه شاهد، پرندگانی که با جیره پایه + 35 میلی‌گرم در کیلوگرم نانو روی در جیره تغذیه شدند ذخیره روی بیشتری در سرم، کبد، گوشت سینه و استخوان درشت‌نی داشتند (05/0>p ). گوشت پرندگان تغذیه شده با جیره حاوی سطوح مختلف سولفات، کیلات و نانو روی دارای مالون‌دی‌آلدهید و افت خونابه کمتری نسبت به شاهد بود (05/0>p ). با توجه به نتایج پژوهش حاضر، مکمل کردن جیره بر پایه دانه ذرت و کنجاله سویا در جوجه بلدرچین­های ژاپنی با 25 میلی‌گرم در کیلوگرم کیلات روی موجب بهبود سرعت رشد و ضریب تبدیل خوراک در مقایسه با پرندگان گروه شاهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of adding different levels of sulfate, chelate and nano zinc to diet on performance, tissue zinc reserves and meat quality of Japanese quail

نویسندگان [English]

  • H. Khaleghi Darmiyan 1
  • F. Bagherzadeh Kasmani 2
  • M. Mehri 2
1 Ph.D Student, Department of Animal Science, College of Agriculture, University of Zabol, Zabol, Iran
2 Associate Professor, Department of Animal Science, College of Agriculture, University of Zabol, Zabol, Iran
چکیده [English]

This experiment was conducted to evaluate dietary supplementation of different levels of sulfate, chelate and nano sources of zinc on growth performance, tissue zinc reserves and meat quality of male growing Japanese quails. The experiment was carried out using 400 Japanese quails in a completely randomized design with 10 experimental treatments and four replicates. The experimental treatments consisted of: basal diet (control group, without zinc supplement) containing 41.25 mg/kg zinc and basal diet supplemented with different sources of zinc (sulfate, chelate and nano zinc) each at three levels of 15, 25 and 35 mg/kg of diet. Birds fed basal diet + 25 mg chelate zinc/kg of diet showed lower feed intake, higher weight gain and improved feed conversion ratio compared to the control group (p < /em>< 0.05). Zinc content in serum, liver, breast meat and tibia of birds fed basal diet + 35 mg nano zinc/kg of diet were higher than the control group (p < /em>< 0.05). Malondialdehyde levels and drip losses in meat of birds fed diets supplemented with different sources of zinc were lower than the control (p < /em><0.05). According to the results of the current study, supplementation of corn–soybean meal-based diet of Japanese quails with 25 mg zinc chelate/kg improved growth rate and feed conversion ratio compared to the control group.

کلیدواژه‌ها [English]

  • Quail
  • Zinc
  • Meat quality
  • Chelate
  • Nano
Abbasi M., Dastar B., Afzali N., Shams Shargh M. and Hashemi S. R. 2017. Zinc requirements of Japanese quails (Coturnix coturnix japonica) by assessing dose-evaluating response of zinc oxide nano-particle supplementation. Poultry Science Journal, 5(2): 131-143.
Ahmadi F., Ebrahimnezhad Y., Sis N. M. and Ghiasi J. 2013. The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. International Journal of Biosciences, 3: 23-29.
Akbari Moghaddam Kakhki R., Bakhshalinejad R., Hassanabadi A. and Ferket P. 2017. Effects of dietary organic zinc and α-tocopheryl acetat supplements on growth performance, meat quality, tissues minerals, and α-tocopherol deposition in broiler chickens. Poultry Science, 96(5): 1257-1267.
Ali S., Masood S., Zaneb H., Faseeh-ur-Rehman H., Masood S., Khan M. U. R. and Tahir S. K. 2017. Supplementation of zinc oxide nanoparticles has beneficial effects on intestinal morphology in broiler chicken. Pakistan Veterinary Journal, 37(3): 335-339.
AOAC. 2005. Association of Official Analytical Chemists, Official Methods of Analysis. 18th (Ed). Maryland, USA.
Bao Y. M., Choct M., Iji P. A. and Bruerton K. 2009. Optimal dietary inclusion of organically complexed zinc for broiler chickens. British Poultry Science, 50: 95-102.
Baum M. K., Shor-Posner G. and Campa A. 2000.  Zinc status in human immune deficiency virus infection. Journal of Nutrition, 130: 142-1423.
Castellini C., Mugnai C. and Dal Bosco A. 2002. Effect of organic production system on broiler carcass and meat quality. Meat science, 60(3): 219-225.
Christensen L. B. 2003. Drip loss sampling in porcine M. longissimus dorsi. Meat Science, 63(4): 469-477.
Cowieson A. J., Acamovic T. and Bedford M. R., 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. British Poultry Science, 45(1): 101-108.
Hafez A., Hegazi S. M., Bakr A. A. and Shishtawy H. E. L. 2017. Effect of zinc oxide nanoparticles on growth performance and absorptive capacity of the intestinal villi in broiler chickens. Life Science Journal, 14(11): 125-129.
Dukare Sagar P., Mandal A. B., Nasir A. and Dinani O. P. 2018. Effect of different levels and sources of zinc on growth performance and immunity of broiler chicken during summer. International Journal of Current Microbiology and Applied Sciences, 7(5): 459-471.
El-Samee L. D. A., El-Wardany I., Ali N. G. and Abo-El-Azab O. M. 2012. Egg quality, fertility and hatchability of laying quails fed diets supplemented with organic zinc, chromium yeast or mannan oligosaccharides. International Journal of Poultry Science, 11: 221-224.
Fosmire G. J. 1990. Zinc toxicity. The American Journal of Clinical Nutrition, 51(2): 225-227.
Hortin A. E., Oduho G., Han Y., Bechtel P. and Baker D. 1993. Bioavailability of zinc in ground beef. Journal of Animal Science, 71: 119-123.
Jafari Sayadi A., Navidshad B., Abolghasemi A., Royan M. and Seighalani R. 2005. Effects of dietary mineral premix reduction or withdrawal on broilers performance. International Journal of Poultry Science, 4 (11): 896-899.
Leeson S. 2003. A new look at trace mineral nutrition of poultry: can we reduce environmental burden of poultry manure. Nutritional Biotechnology in the Feed and Food Industries, 30: 125-129.
Linares L. B., Broomhead J. N., Guaiume E. A., Ledoux D. R., Veum T. L. and Raboy V. 2007. Effects of low phytate barley (Hordeum vulgare  L.) on zinc utilization in young broiler chicks. Poultry Science, 86: 299-308.
Luykx D. M., Peters R. J., van Ruth S. M. and Bouwmeester H. 2008. A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56(18): 8231-8247.
Ma S., Zhou J., Kang Y. C., Reddic J. E. and Chen D. A. 2004. Dimethyl methylphosphonate decomposition on Cu surfaces: Supported Cu nanoclusters and films on TiO2. Langmuir, 20(22): 9686-9694.
Mählmeyer A., Lindel J., Schlagheck A., Hildebrand B. and Männer K. 2018. Investigation on the effect of trace mineral source on parameters of bioavailability in broiler chickens. Veterinarija ir Zootechnika, 76 (98): 56-61.
Mayer A. N., Vieira S. L., Berwanger E., Angel C. R., Kindlein L., França I. and  Noetzold L. 2019. Zinc requirements of broiler breeder hens. Poultry Science, 98(3): 1288-1301. 
Mehdipour Z., Afsharmanesh M. and Sami M. (2013). Effects of dietary synbiotic and cinnamon (Cinnamomum verum) supplementation on growth performance and meat quality in Japanese quail. Livestock Science, 154(1): 152-157.
Mehri M., Sabaghi V. and Bagherzadeh-Kasmani F. 2015. Mentha piperita (peppermint) in growing Japanese quails’ diet: Serum biochemistry, meat quality, humoral immunity. Animal Feed Science and Technology, 206: 57-66.
Mohammadi B. and Akbari M. R. 2017. Effects of zinc oxide nanoparticles on immune system function, antioxidant status, and performance of broiler chickens fed wheat-based diets. Journal of Animal Science Researches, 27(1): 103-114.
Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh A. and Nazaran M. H. 2015. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. British Poultry Science, 56(4): 486-493.
Mwangi S., Timmons J., Ao T., Paul M., Macalintal L., Pescatore A., Cantor A., Ford M. and Dawson K. A. 2016. Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poultry Science, 96(4): 861-868.
National Research Council. 1994. Nutrient requirements of poultry. 9th Edition. National Academy Press, Washington, DC, USA.
Pathak S. S., Reddy K. V. and Prasoon S. 2016. Influence of different sources of zinc on growth performance of dual purpose chicken. Journal of Bio Innovation, 5: 663-672.
Pierce J. L., Shafer B. L., Power R. and Dawson K. A. 2005. Nutritional means to lower trace mineral excretion from poultry without compromising performance. Poultry Science, 84: 1-11.
Rauw W. M. 2012. Immune response from a resource allocation perspective. Frontiers in Genetics, 3: 267-281.
Saenmahayak B., Singh M., Bilgili S. F. and Hess J. B. 2012. Influence of dietary supplementation with complexed zinc on meat quality and shelf life of broilers. International Journal of Poultry Science, 11(1): 28-32.
Sahin K., Smith M. O., Onderci M., Sahin N., Gursu M. F. and Kucuk O. 2005. Supplementation of zinc from organic or inorganicsource improves performance and antioxidant status of heat-distressed quail. International Journal of Poultry Science, 84: 882-887.
SAS Institute. 2003. SAS User’s Guide: Statistics. 9.1 Edition. SAS Institute Inc. Cary, NC.
Schlegel P., Sauvant D. and Jondreville C. 2013. Bioavailability of zinc sources and their interaction with phytates in broilers and piglets. Animal, 7(1): 47-59.
Shelton J. L. and Southern L. L. 2006. Effects of phytase addition with or without a trace mineral premix on growth performance, bone response variables, and tissue mineral concentrations in commercial broilers. The Journal of Applied Poultry Research, 15(1): 94-102.
Shyam Sunder G., Panda A. K., Gopinath N. C. S., Rama Rao S. V., Raju M. V. L. N., Reddy M. R. and Vijay Kumar Ch. 2008. Effects of higher levels of zinc supplementation on performance, mineral availability, and immune competence in broiler chickens. The Journal of Applied Poultry Research, 17(1): 79-86.
Smith M. O., Sherman I. L., Miller L. C., Robbins K. R. and Halley J. T. 1995. Relative biological availability of manganese from manganese proteinate, manganese sulfate, and manganese monoxide in broilers reared at elevated temperatures. Poultry Science, 74(4): 702-707.
Star L., Van der Klis J. D., Rapp C. and Ward T. L. 2012. Bioavailability of organic and inorganic zinc sources in male broilers. Poultry Science, 91(12): 3115-3120.
Sunder G. S., Panda A. K., Gopinath N. C. S., Rao S. R., Raju M. V. L. N., Reddy M. R. and Kumar C. V. 2008. Effects of higher levels of zinc supplementation on performance, mineral availability, and immune competence in broiler chickens. Journal of Applied Poultry Research, 17(1): 79-86.
Swain P. S., Rao S. B., Duraisamy Rajendran G. D. and Selvaraju S. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3): 134-141.
Świątkiewicz S., Arczewska-Włosek A. and Jozefiak D. 2014. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World's Poultry Science Journal, 70(3): 475-486.
Underwood E. J. 1981. The mineral nutrition of livestock. 2nd ed. Commonwealth Agriculture Bureau, Slough, UK.
Van Der Klis J. D., Kemme P. A., McNab J. M. and Boorman K. N. 2002. An appraisal of trace elements: inorganic and organic. Poultry Feedstuffs: Supply, Composition and Nutritive, 99-108.
Van Der Most P. J., de Jong B., Parmentier H. K. and Verhulst S. 2011. Trade‐off between growth and immune function: a meta‐analysis of selection experiments. Functional Ecology, 25(1): 74-80.
Vieira S. L. 2008. Chelated minerals for poultry. Revista Brasileira de Ciência Avícola, 10(2): 73-79.
Warris P. D. 2000. Meat science: an introductory text. New York: CABI Publishing.
Wedekind K. J., Hortin A. E. and Baker D. H. 1992. Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. Journal of Animal Science, 70: 178-187.
Zaghari M., Avazkhanllo M. and Ganjkhanlou M. 2105. Reevaluation of male broiler zinc requirement by dose-response trial using practical diet with added exogenous phytase. Journal of Agricultural Science and Technology, 17: 333-343.
Zhang T. Y., Liu J. L., Zhang J. L., Zhang N., Yang X., Qu H. X., Xi L. and Han J. C. 2018. Effects of dietary zinc levels on the growth performance, organ zinc content, and zinc retention in broiler chickens. Revista Brasileira de Ciência Avícola, 20(1): 127-132.
Zhao J., Shirley R. B., Vazquez-Anon M., Dibner J. J., Richards J. D., Fisher P., Hampton T., Christensen K. D., Allard J. P. and Giesen A. F. 2010. Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. Journal of Applied Poultry Research, 19(4): 365-372.
Zhou X. and Wang Y. 2011. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. International Journal of Poultry Science, 90: 680-686.