پیامدهای واردات مواد ژنتیکی با در ‌‌نظر گرفتن اثر متقابل ژنوتیپ و محیط و فاصله جایگزینی در گاو شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 استاد، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

4 استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

هدف این مطالعه، بررسی نقش اثر متقابل ژنوتیپ و محیط (G×E) و فاصله نسل در پیشرفت‌ ژنتیکی حاصل از واردات مواد ژنتیکی گاو شیری در یک کشور فاقد برنامه اصلاح‌ نژادی پیشرفته بود. به منظور شبیه‌سازی G×E از تغییر آثار جانشینی آلل‌ها استفاده ‌شد. سه سطح 100 (شاهد)، 75 و 50 درصد هم‌پوشانی آثار جایگاه­های کنترل­کننده صفات کمّی (QTL‌) در نرهای وارداتی در سطوح وراثت‌پذیری 1/0، 3/0 و 5/0 و سه سناریوی جایگزینی پیوسته، جایگزینی با فاصله یک نسل و با فاصله دو نسل مواد ژنتیکی خارجی در نظر گرفته شد. علاوه بر آن، اثر کاهش صحت پیش‌بینی ژنومی در صفات با وراثت‌پذیری پایین مورد مطالعه قرار گرفت. عملکرد دختران گاوهای نر در جمعیت محلی در سناریوی شاهد نشان داد که راهبردهای مبتنی بر واردات بر راهبردهای جمعیت محلی برتری دارد. همبستگی ژنتیکی ایجاد ‌شده برای هم‌پوشانی 75 و 50 درصدی آثار QTLها به ترتیب 7/0 و 5/0 بود. با کاهش همبستگی ژنتیکی اگر چه در طول زمان روند پاسخ ژنتیکی افزایش یافت، اما به اندازه جمعیت مبدا نبود. بیشترین میزان پیشرفت ژنتیکی (56/2) برای وراثت‌پذیری 5/0 در جایگزینی پیوسته و عدم وجود G×E مشاهده شد. کاهش صحت پیش‌بینی، G×E را تشدید کرد. به طور کلی فقط با واردات مواد ژنتیکی از جمعیت‌ مبدا با میانگین ژنتیکی بالاتر و همچنین در نظر گرفتن G×E در صفات مختلف، می‌توان میزان بیشتری از انتقال پیشرفت ‌ژنتیکی به جمعیت محلی را به­دست آورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Consequences of importing genetic materials considering genotype by environment interaction and replacement interval in dairy cattle

نویسندگان [English]

  • A. Haghdoost 1
  • M. M. Shariati 2
  • A. A. Shadparvar 3
  • N. Ghavi Hossein-Zadeh 3
  • S. Zerehdaran 4
1 Ph.D Student, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Assistant Professor, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Professor, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
4 Professor, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

The present study was aimed to assess the role of genotype× environment interaction (G×E) and generation interval on the genetic gain caused by importing the genetic materials of dairy cattle in a country without advanced breeding program. Changing allele substitution effects of quantitative trait loci (QTLs) underlying the trait was used to simulate G×E. To this end, three levels of 100 (control), 75 and 50% overlapping of QTL effects in imported sires at the heritability levels of 0.1, 0.3, and 0.5, as well as three scenarios of continuous replacing and discontinuous replacing with one and two generations of foreign genetic materials were considered. Moreover, the effect of decreasing the accuracy of genomic prediction in traits with the low level of heritability was investigated. Based on the performance of daughters of sires in the local population of control scenario, import-based strategies were better than on the strategies of local population. The genetic correlation created in 75% and 50% overlapping of QTL effects were as 0.7 and 0.5, respectively. Although the trend of genetic response increased by decreasing genetic correlation over the time, it was not equal to origin population. Maximum genetic gain (2.56) was observed with a heritability of 0.5 in continuous replacing and absence of G×E. A decrease in the accuracy of prediction resulted in exacerbation of G×E. In general, more genetic improvement is transmitted from origin population to local population only by importing the genetic materials related to populations with higher genetic mean and also by considering G×E in different traits.

کلیدواژه‌ها [English]

  • Genotype by environment interaction
  • Genomic selection
  • Genetic gain
  • Generation interval
  • Dairy cattle
Bohlouli M. and Alijani S. 2012. Genotype by environment interaction for milk production traits in Iranian Holstein dairy cattle using random regression model. Livestock Research for Rural Development, 24: 1-7.
Bohmanova J., Sargolzaei M. and Schenkel F. S. 2010. Characteristics of linkage disequilibrium in North American Holsteins. BMC Genomics, 11: 421.
Boichard D., Ducrocq V. and Fritz S. 2015. Sustainable dairy cattle selection in the genomic era. Journal of Animal Breeding and Genetics, 132: 135-143.
Canadian Dairy Network. 2019. Trend in Genomic Versus Proven Sire Usage. Retrieved April 4, 2019, from https://www.cdn.ca/document.php?id=454.
Cassell B. 2010. Genetic improvement using young sires with genomic evaluations. Virginia Polytechnic Institute and State University, Retrieved April 21, 2010, from https://pubs.ext.vt.edu/404/404-090/404-090_pdf.
Clark S., Brown D. and van der Werf  J. H. J. 2014. The effect of using genomic breeding values to manage the loss in response to selection caused by genotype by environment interactions. In: Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Pp. 1-4.
Dehnavi E, Mahyari S. A., Schenkel F. S. and Sargolzaei M. 2018. The effect of using cow genomic information on accuracy and bias of genomic breeding values in a simulated Holstein dairy cattle population. Journal of Dairy Science, 101: 5166-5176.
Falconer D.1952. The problem of environment and selection. The American Naturalist, 86: 293-298.
Falconer D. and Mackay T. 1996. Introduction to Quantitative Genetics. (3nded.).United Kingdom: Longman, Pp. 125-146.
Fleming A., Abdalla E. A., Maltecca C. and Baes C. F. 2018. Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Archives Animal Breeding, 61: 43–57.
García-Ruiz A., Cole J. B., VanRaden P. M., Wiggans G. R., Ruiz-López F. J. and Tassell C. P. V. 2016. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proceedings of the National Academy of Sciences, 113(28): E3995-4004.
Haile-Mariam M., Carrick M. J. and Goddard M. E. 2008. Genotype by environment interaction for fertility, survival, and milk production traits in Australian dairy cattle. Journal of Dairy Science, 91: 4840-4853.
Hammami H., Rekik B., Soyeurt H., Bastin C., Bay E., Stoll J. and Gengler N. 2009. Accessing genotype by environment interaction using within- and across-country test-day random regression sire models. Journal of Animal Breeding and Genetics, 126: 366-377.
International Bull Evaluation Service. 2019. Interbull Routine Genetic Evaluation for Production Traits. Retrieved April, 2019, from https://interbull.org/ib/maceev_archive.
Komisarek J. and Kolenda M. 2016. The effect of DGAT1 polymorphism on milk production traits in dairy cows depending on environmental temperature. Turkish Journal of Veterinary and Animal Sciences, 40: 251–254.
Li X., Buitenhuis A. J., Lund M. S., Li C., Sun D., Zhang Q., Poulsen N. A. and Su G. 2015. Joint genome-wide association study for milk fatty acid traits in Chinese and Danish Holstein populations. Journal of Dairy Science, 98: 8152-8163.
Li X., Lund M. S., Zhang Q., Costa C. N., Ducrocq V. and Su G. 2016. Short communication: Improving accuracy of predicting breeding values in Brazilian Holstein population by adding data from Nordic and French Holstein populations. Journal of Dairy Science, 99: 4574-4579.
Lillehammer M., Hayes B. J., Meuwissen T. H. E. and Goddard M. E. 2009. Gene by environment interactions for production traits in Australian dairy cattle. Journal of Dairy Science, 92: 4008-4017.
Liu A., Wang Y., Sahana G., Zhang Q., Liu L., Lund M. S. and Su G. 2017. Genome-wide Association studies for female fertility traits in Chinese and Nordic Holsteins. Scientific Reports, 7: 1-12.
Masuda Y., VanRaden P. M., Misztal I. and Lawlor T. J. 2018. Differing genetic trend estimates from traditional and genomic evaluations of genotyped animals as evidence of preselection bias in US Holsteins. Journal of Dairy Science, 101: 5194-5206.
Meuwissen T., Hayes B. and Goddard M. 2013. Accelerating improvement of livestock with genomic selection. Annual Review of Animal Biosciences, 1: 221–237.
Montaldo H. H., Pelcastre-Cruz A., Castillo-Juárez H., Ruiz-López F. J. and Miglior F. 2017. Genotype × environment interaction for fertility and milk yield traits in Canadian, Mexican and US Holstein cattle. Spanish Journal of Agricultural Research, 15: e0402.
Montaldo H. H., Castillo-Juárez H., Lizana C., Trejo C., Cienfuegos-Rivas E. G. and Pelcastre-Cruz A. 2015. Genotype-environment interaction between Chile and North America and between Chilean herd environmental categories for milk yield traits in black and white cattle. Animal Science Papers and Reports, 33: 23-33.
Mpofu N., Smith C. and Burnside E. B. 1993. Breeding strategies for genetic improvement of dairy cattle in Zimbabwe. 1. Genetic evaluation. Journal of Dairy Science, 76: 1163-1172.
Mulder H. A. and Bijma P. 2005. Effects of genotype x environment interaction on genetic gain in breeding programs. Journal of Animal Science, 83: 49-61.
Mulder H. A. and Bijma P. 2006. Benefits of cooperation between breeding programs in the presence of genotype by environment interaction. Journal of Dairy Science, 89: 1727-1739.
Nilforooshan M. and Edriss M. A. 2007. Comparison of Holstein bull semen sources on milk traits in Isfahan province in Iran. Archiv fur Tierzucht, 50: 71-83.
Obšteter J., Jenko J., Hickey J. M. and Gorjanc G. 2019.Efficient use of genomic information for sustainable genetic improvement insmall cattle populations. Journal of Dairy Science, 102: 9971-9982.
Okeno T. O., Kosgey I. S. and Kahi A. K. 2010.Genetic evaluation of breeding strategies for improvement of dairy cattle in Kenya. Tropical Animal Health and Production, 42: 1073-1079.
Patry C. 2011. Impacts of genomic selection on classical genetic evaluations. Ph.D dissertation, AgroParisTech University, Paris.
Ramirez-valverde R., Núñez-Domínguez R., Palacios A. and Jiménez-Carrasco J. 2014. Characterization of dairy cattle germplasm used in Mexico with national genetic evaluations in importing and exporting countries. Livestock Science, 167: 51-57.
Rexroad C., Vallet J., Matukumalli L. K., Reecy J., Bickhart D., Blackburn H., Boggess M., Cheng H., Clutter A., Cockett N., Ernst C., Fulton J. E., Liu J., Lunney J., Neibergs H., Purcell C., Smith T. P. L., Sonstegard T., Taylor J., Telugu B., Eenennaam A. V., Tassell C. P. V. and Wells K. 2019. Genome to phenome: Improving animal health, production, and well-being - A new USDA blueprint for animal genome research 2018-2027. Frontiers in Genetics, 10: 1-29.
Sargolzaei M. and Schenkel F. S. 2009. QMSim: A large-scale genome simulator for livestock. Bioinformatics, 25: 680-681.
Schefers J. M. and Weigel K. A. 2012. Genomic selection in dairy cattle: Integration of DNA testing into breeding programs. Animal Frontiers, 2: 4-9.
Smith C. and Banos G. 1991. Selection within and across populations in livestock improvement. Journal of Animal Science, 69: 2387-2394.
Vargas B. and van Arendonk J. A. M. 2004. Genetic comparison of breeding schemes based on semen importation and local breeding schemes: framework and application to Costa Rica. Journal of Dairy Science, 87: 1496-1505.
Weigel K. A., VanRaden P. M., Norman H. D. and Grosu H. 2017. A 100-Year Review: Methods and impact of genetic selection in dairy cattle- From daughter–dam comparisons to deep learning algorithms. Journal of Dairy Science, 100: 10234-10250.
Wetzel-Gastal D., Feitor F., van Harten S., Sebastiana M., Sousa L. M. R. and Cardoso L. A. 2018. A genomic study on mammary gland acclimatization to tropical environment in the Holstein cattle. Tropical Animal Health and Production, 50: 187-195.
Yin T., Pimentel E. C. G., König V., Borstel U. and König S. 2014. Strategy for the simulation and analysis of longitudinal phenotypic and genomic data in the context of a temperature × humidity-dependent covariate. Journal of Dairy Science, 97: 2444-2454.
Zhou L., Ding X., Zhang Q., Wang Y., Lund M. S. and Su G. 2013. Consistency of linkage disequilibrium between Chinese and Nordic Holsteins and genomic prediction for Chinese Holsteins using a joint reference population. Genetics, Selection, Evolution, 45: 7-10.