بررسی ارزش غذایی و امکان سیلوپذیری گیاه خودروی خرفه (Portulaca oleracea L.) بدون یا مخلوط با سبوس گندم

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه علوم دامی، مجتمع آموزش عالی تربت‌جام

چکیده

خرفه (Portulaca oleracea L.) علف هرزی است که قابلیت رویش در بیشتر نقاط ایران را دارد، اما اطلاعات اندکی درباره ارزش تغذیه‌ای این گیاه وجود دارد. بنابراین، پژوهش حاضر با هدف تعیین ترکیب شیمیایی و فراسنجههای تخمیر برون‌تنی علف تازه و سیلاژ خرفه‌ بدون یا مخلوط با سبوس گندم انجام شد. خرفه‌ در مرحله‌ گل­دهی برداشت شد و بخشی از آن در محفظه‌های پلی‌اتیلنی به‌مدت 60 روز سیلو شدند. تیمارهای آزمایشی شامل 1) خرفه‌ تازه، 2) سیلاژ خرفه بدون افزودنی، 3) سیلاژ خرفه+16 درصد سبوس گندم (وزن تر) و 4) سیلاژ خرفه+32 درصد سبوس گندم (وزن تر) بود. دامنه‌ پروتئین خام از 27/19 درصد تا 86/26 درصد برای چهار تیمار متغیر بود. بیشترین مقدار pH (72/4) و نیتروژن آمونیاکی (85/10 درصد نیتروژن کل) در سیلاژ بدون افزودنی مشاهده شد، ولی غلظت اسید لاکتیک و کل اسیدهای چرب فرار در سیلاژهای دارای سبوس گندم بیشتر بود (05/0>P). با سیلو شدن خرفه، میزان تجزیه‌پذیری حقیقی ماده آلی (03/71 درصد) و ماده خشک (05/70 درصد) و پتانسیل تولید گاز (90/28 میلی‌لیتر)، در مقایسه با علف تازه کاهش یافت (05/0>P). در مجموع، علف خرفه، پروتئین و قابلیت هضم مناسبی برای تغذیه دام داشت. اگرچه ارزش تغذیه‌ای علف تازه‌ خرفه در مقایسه با سیلاژ آن بالاتر بود، اما به ‌دلیل مشکل خشک شدن، سیلو کردن می‌تواند روش مناسبی برای نگهداری آن باشد. سیلاژ خرفه‌ بدون افزودنی دارای ماده خشک اندک و همراه با کپک‌زدگی بود، اما افزودن سبوس گندم، کیفیت سیلاژ خرفه را در حد قابل قبولی بهبود بخشید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the nutritional value and ensiling possibility of purslane as a weed plant (Portulaca oleracea L.) with or without wheat bran

نویسنده [English]

  • M. Kazemi
Assistant Professor, Department of Animal Science, Higher Education Complex of Torbat-e Jam, Torbat-e Jam, Iran
چکیده [English]

Purslane (Portulaca oleracea L.) is a weed forage that can grow in most parts of Iran; however, the nutritional value of this plant has been less considered. Therefore, the present study aimed to determine the chemical composition and in vitro fermentation parameters of fresh and ensiled portulaca oleracea with or without wheat bran. Purslane was harvested during the flowering stage and ensiled in polyethylene containers for 60 days. Experimental treatments included: 1) fresh purslane, 2) purslane silage without additive, 3) purslane silage+16% wheat bran (fresh weight), and 4) purslane silage+32% wheat bran (fresh weight). The crude protein of the four treatments ranged from 19.27% to 26.86%. The highest concentration of ammonia nitrogen (10.85% of total nitrogen) and pH (4.72) of silage extract were observed in silage without additive, but the concentrations of lactic acid and total volatile fatty acids were highest in the silages containing wheat bran (P<0.05). After ensiling, the true digestibility of organic matter (71.03%) and dry matter (70.05%), as well as potential gas production (28.90 mL), showed a significant decrease compared to fresh purslane (P<0.05). In general, purslane had a favorite protein content and digestibility in animal feeding. Although the nutritional value of fresh purslane was higher in comparison with silage, ensiling can reduce the problems of drying. Purslane silage without additive had low dry matter content and contained mildew, but the quality of purslane was improved when wheat bran was added to the silage.

کلیدواژه‌ها [English]

  • Fermentation
  • Nutrition
  • Wheat bran
  • Silage
  • In vitro batch culture
کریمی م.، بشارتی م.، تقی‌زاده ا.، و صفری ر. 1396. اثر افزودنی باکتریایی تولید کننده اسید لاکتیک ناهمگن بر ترکیبات شیمیایی و خصوصیات تخمیری مخلوط یونجه پلاسیده شده به همراه تفاله پرتقال. تحقیقات تولیدات دامی، 6(1): 27-37.
Aberoumand A. 2009. Nutritional evaluation of edible portulaca oleracia as plant food. Food Analytical Methods, 2: 204-207.
ANKOM Technology. 2006a. Acid detergent fiber in feeds-filter bag technique method 5. Available at  https://www.ankom.com/sites/default/files/document-files/Method_12_ADF_A2000.pdf
ANKOM Technology. 2006b. Neutral detergent fiber in feeds-filter bag technique method 6. Available at  https://www.ankom.com/sites/default/files/document-files/Method_6_NDF_A200.pdf
AOAC. 1999. Official methods of analysis. 16th edition, Association of official analytical chemists, Washington, DC, USA.
Bagheripour E., Rozbehan Y. and Alipour D. 2008. Effect of ensiling, air-drying and addition of polyethylene glycol on in vitro gas production of pistachio by-products. Animal Feed Science and Technology, 146: 327-336.
Barnett A. J. G. and Reid R. 1957. Studies on the production of volatile fatty acids from grass in artificial rumen. 1. Volatile fatty acids production from fresh grasses. Journal of Agricultural Science (Cambridge), 48: 315-321.
Carpintero C. M., Henderson A. R. and McDonald P. 1979. Effect of some pre-treatments on proteolysis during the ensiling of herbage. Grass Forage Science, 34: 311-315.
Charmley E. 2001. Towards improved silage quality-A review. Canadian Journal of Animal Science, 81: 157-168.
Danner H., Holzer M., Mayrhuber E. and Braun R. 2003. Acetic acid increases stability under aerobic conditions. Applied and Environmental Microbiology, 69(1): 562-567.
Dordevic S., Mandic V., Stanojevic D. and Jovanovic-Ljeskovic N. 2017. Effects of Lactobacillus plantarum inoculants on maize silage quality. Biotechnology in Animal Husbandry, 33(1): 115-125.
Dubios A., Giles M. K. A., Hamilton J. K., Ronerts P. A. and Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356.
Elahi, M. Y., Yusuf A. O., Torshabi A., Fazaeli H., Dehghani M. R. and Salem A. Z. M. 2018. Ensiling pretreatment of banana waste by‐products: Influences on chemical composition and environmental rumen biogas and fermentation. Waste and Biomass Valorization, 10: 3363-3371.
Ezekwe M. O., Omara-Alwala T. R. and Membrahtu T. 1999. Nutritive characterization of purslane accessions as influenced by planting date. Plant Foods for Human Nutrition, 54: 183-191.
Frank B., Gustafsson G. and Persson M. 2002. Feeding dairy cows for decreased ammonia emission. Livestock Production Science, 76: 171-179.  
Getachew G., Robinson P. H., DePeters E. J. and Taylor S. J. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology, 111(1-4): 57-71.
Gosselink J. M. J., Dulphy J. P., Poncet C., Tamminga S. and Cone J. W. 2004. A comparison of in situ and in vitro methods to estimate in vivo fermentable organic matter of forages in ruminants. NJAS Wageningen Journal of Life Sciences, 52: 29-45.
Guo X. S., Ding W. R., Han J. G. and Zhou H. 2008. Characterization of protein fractions and amino acids in ensiled alfalfa treated with different chemical additives. Animal Feed Science and Technology, 142: 89-98.
Kaiser A. G., Piltz J. W., Burns H. M. and Riffiths G. 2004. Top fodder successful silage. Orange: Dairy Australia and New South Wales, Department of Primary Industries. 486p.
Kazemi M., Tahmasbi A. M., Valizadeh R., Naserian A. A. and Moheghi M. M. 2009. Assessment of nutritive value of four dominant weed species in range of Khorasan distinct of Iran by in vitro and in situ techniques. Journal of Animal and Veterinary Advances, 8: 2286-2290.
Kleinschmit D. H. and Kung Jr. L. 2006. The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage.  Journal of Dairy Science, 89: 3999-4004.
Koc F. and Coskuntuna L. 2003. The comparison of the two different methods on the determination of organic acids in silage fodders. Journal of Animal Production, 44(2): 37-47.
Komolong M. K., Barber D. G. and McNeill D. M. 2001. Post-ruminal protein supply and N retention of weaner sheep fed on a basal diet of lucerne hay (Medicago sativa) with increasing levels of quebracho tannins. Animal Feed Science and Technology, 92(1-2): 59-72.
Kung L. Jr. and Shaver R. 2001. Interpretation and use of silage fermentation analysis reports. Focus on Forage, 3(13): 1-5.
Kung L. Jr., Shaver R. Grant R. J. and Schmidt R. J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101: 4020-4033.
Larbi A., Smith J. W., Kurdi I. O., Adeknle I. O., Raji A. M. and Ladipo D. O. 1998. Chemical composition, rumen degradation, and gas production characteristics of some multipurpose fodder trees and shrubs during wet and dry seasons in the humid tropics. Animal Feed Science and Technology, 72: 81-96.
Lee A. S., Kim J. S., Lee Y. J., Kang D. and Lee H. S. 2012. Anti-TNF-𝛼 activity of Portulaca oleracea in vascular endothelial cells. International Journal of Molecular Sciences, 13(5): 5628-5644.
Lia M., Zi X., Zhou H., Hou G. and Cai Y. 2014. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Animal Feed Science and Technology, 197: 206-212. 
Madibela O. R. and Modiakgotla E. 2004. Chemical composition and in vitro dry matter digestibility of indigenous finger millet (Eleusine coracana) in Botswana. Livestock Research for Rural Development, 16(4).
Makkar H. P. S. 2010. In vitro screening of feed resources for efficiency of microbial protein synthesis. In: In vitro screening of plant resources for extra-nutritional attributes in ruminants: Nuclear and related methodologies (Eds.). Springer, New York, USA. pp. 106-144.
McDonald P., Henderson A. R. and Heren S. J. E. 1991. The biochemistry of silage (2nd ed.). United Kingdom:  Chalcombe publication.
McDonald P., Edwards R. A., Greenhalgh J. F. D. and Morgan C. A. 2002. Animal nutrition (6nd ed.). United Kingdom: Longman. pp. 451-464.
Menke K. H. and Steingass H. 1988. Estimation of energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28: 7-55.
Muller C. E., Pauly T. M. and Uden P. 2007. Storage of small bale silage and haylage–influence of storage period on fermentation variables and microbial composition. Grass and Forage Science, 62(3): 274-283.
Norton B. W. 1998. The nutritive value of tree legumes. In: Gutteridge, R.C., Shelton, H.M. (Eds.), Forage Tree Legumes in Tropical Agriculture. Tropical Grassland Society of Australia Inc., Queensland, Australia.
Ohshima M., Kimura E. and Yokota H. 1997. A method of making good quality silage from direct cut alfalfa by spraying previously fermented juice. Animal Feed Science and Technology, 66: 129-137.  
Ojeda F. and Montejo I. 2001. Conservacio´n de morera (Morus alba) como ensilaje (Storage of morera (Morus alba) as silage). I. Efecto sobre los compuestos nitrogenados. Pastos y Forrajes, 24: 147-155.
Oliveira A. P. D., Bagaldo A. R., Loures D. R. S., Bezerra L. R., Moraes S. A., Yamamoto S. M., Araujo F. L., Cirne L. G. and Oliveira R. L. 2018. Effect of ensiling gliricidia with cassava on silage quality, growth performance, digestibility, ingestive behavior and carcass traits in lambs. Animal Feed Science and Technology, 241: 198-209.
Ørskov E. R. and McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 92: 499-503.
Palaniswamy U. R., McAvoy R. J. and Bible B. B. 2001. Stage of harvest and polyunsaturated essential fatty acid concentrations in purslane (Portulaca oleraceae) leaves. Journal of Agricultural and Food Chemistry, 49(7): 3490-3493.
Pawar M. M., Kamra D. N., Agarwal N. and Chaudhary L. C. 2014. Effects of essential oils on in vitro methanogenesis and feed fermentation with buffalo rumen liquor. Agricultural Research, 3: 67-74.
Raghuvansi S. K. S., Prasad R., Mishra A. S., Chaturvedi O. H., Tripathi M. K., Misra A. K., Saraswat B. L. and Jakhmola R. C. 2007. Effect of inclusion of tree leaves in feed on nutrient utilization and rumen fermentation in sheep. Bioresource Technology, 98: 511-517.
Razak O. A., Masaaki H., Yimamu A. and Meiji O. 2012. Potential water retention capacity as a factor in silage effluent control: experiments with high moisture by-product feedstuffs. Asian-Australasian Journal of Animal Science, 25(4): 471-8.
Sallam S. M. A., Bueno I. C. S., Brigide P., Godoy P. B., Vittii D. M. M. S. and Abdalla A. L. 2009. Efficiency of eucalyptus oil on in vitro ruminal fermentation and methane production. Nutritional and Foraging Ecology of Sheep and Goats, 85: 267-272.
SAS Institute. 2002. SAS user’s Guide: statistics. Statistical Analysis Systems Institute Inc. Cary NC.
Seglar W. J. 2003. Fermentation analysis and silage quality testing, In: Proceedings of the Minnesota Dairy Health, College of Veterinary Medicine, University of Minnesota, May 2003.
Sucu E., Kalkan H., Canbolat O. and Filya I. 2016. Effects of ensiling density on nutritive value of maize and sorghum silages. Revista Brasileira de Zootecnia, 45(10): 596-603.
Theodorou M. K., Williams B. A., Dhanoa M. S., McAllan A. B. and France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feed. Animal Feed Science and Technology, 48: 185-197.
Tian J., Yu Y., Yu Z., Shao T., Na R. and Zhao M. 2014. Effects of lactic acid bacteria inoculants and cellulase on fermentation quality and in vitro digestibility of Leymus chinensis silage. Grassland Science, 60: 199-205.
Zhang T., Li L., Wang X., Zeng Z., Hu Y. and Cui Z. 2009. Effect of Lactobacillus buchneri and Lactobacillus plantarum on fermentation, aerobic stability, bacteria diversity and ruminal degradability of alfalfa silage. World Journal of Microbiology and Biotechnology, 25: 965-971.
Zhou Y. X., Xin H. L., Rahman K., Wang S. J., Peng C. and Zhang H. 2015. Portulaca oleracea L.: A Review of phytochemistry and pharmacological effects. BioMed Research International, 2015: 1-11.