داده‌کاوی برخی سازه‌های مؤثر بر سخت‌زایی در گاوهای شیری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج

چکیده

داده‌کاوی، به کشف روابط و الگوهای پنهان و ناپیدا در میان حجم عظیمی از داده‌ها می‌پردازد که بدون استفاده از آن، ممکن است این روابط هیچ­گاه آشکار نشوند. تعیین سازه‌های مؤثر بر سخت‌زایی در گاوهای شیری می‌تواند به ضعف مدیریتی صنعت گاو شیری و مشکلات ناشی از آن کمک کند. بنابراین ضروری است که از بین سازه‌های ژنتیکی و غیر ژنتیکی مختلف مؤثر بر سخت‌زایی، مهم‌ترین آن‌ها شناسایی و مدیریت شوند. الگوریتم انتخاب ویژگی یکی از روش‌های داده‌کاوی است که می‌تواند در این زمینه مفید باشد. هدف از این پژوهش تعیین مهم‌ترین سازه‌های مؤثر بر سخت‌زایی گاوهای شیری هلشتاین با استفاده از الگوریتم انتخاب ویژگی بود. کل رکوردها برابر با 413205 به همراه 14 ویژگی مربوط به رکوردهای تولیدمثلی و تولیدی بود. داده با چهار روش مهم الگوریتم انتخاب ویژگی (Best-First،Greedy-Stepwise Genetic-search و Ranker) و نه مدل مختلف (CFS-Subset-Eval ،Gain-Ratio-Attribute- Eval و ...) برای تعیین مهم‌ترین عوامل مؤثر بر سخت‌زایی ارزیابی شدند. نتایج نشان داد روش Genetic-search الگوریتم انتخاب ویژگی، مناسب‌ترین روش برای انتخاب عوامل مؤثر بر سخت‌زایی با استفاده از دسته‌بندی Naive Bayes Tree با کم‌ترین میزان خطا (AMS= 0.011, ARAE=0.001) بود. مهم‌ترین سازه‌های مؤثر بر سخت‌زایی به ‌ترتیب تولید شیر، سن مادر هنگام زایش، شکم زایش، طول دوره آبستنی، شیر تصحیح شده بر اساس چهار درصد چربی، فاصله زایش، فصل زایش، نوع زایش، نسبت چربی به پروتئین، جنس گوساله، وزن گوساله و روزهای باز بودند. انتظار می‌رود با در نظر گفتن سازه‌های مزبور، سخت‌زایی در گاوهای شیری بهتر مدیریت شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Data mining of some factors affecting dystocia in Iranian dairy cows

نویسندگان [English]

  • M. Montazeri-Najafabadi 1
  • M. Ghaderi-Zefrehei 2
1 Graduated MSc, Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj, Iran
2 Associate Professor, Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj, Iran
چکیده [English]

Data mining explores hidden and invisible relationships and patterns in the vast amount of data without which these relationships may never be revealed. Determining the factors affecting dystocia in dairy cattle can help to find the weaknesses of the management of the dairy cattle industry and the resulting problems. Therefore, it is necessary to identify and manage the most important of the various genetic and non-genetic factors that affecting dystocia. The feature selection algorithm is one of the data mining methods that can be useful in this field. This study aimed to determine the most important factors affecting the dystocia of Holstein dairy cows using the feature selection algorithm. The total records were 413205, along with 14 features related to reproductive and production records. Data analyzed with four important methods of feature selection algorithm (Best-First, Greedy-Stepwise Genetic-search, and Ranker) and nine different models (CFS-Subset-Eval, Gain-Ratio-Attribute-Eval, etc.) to determine the most important factors. The results showed that the genetic-search method using Naive Bayes Tree classification of the feature selection was the most appropriate method for selecting the factors affecting dystocia with the lowest error rate (AMS = 0.011, ARAE = 0.001). The most important factors affecting dystocia were milk production, dam age at parturition, parity, gestational length, corrected milk based on 4% fat, calf sex, calf weight, the season of calving, type of calving, fat-to-protein percentage ratio, and open days. It is expected that by considering these factors, dystocia can be better managed in dairy cattle enterprises.

کلیدواژه‌ها [English]

  • Feature selection algorithm
  • Reproduction
  • Dystocia
  • Dairy cow
صادقی م. ر.، و جعفری خورشیدی ک. 1390. بررسی اثر دوره‌ی شیردهی و میزان تولید شیر بر صفات تولید مثلی گاوهای شیری هلشتاین. اولین همایش ملی مباحث نوین در کشاورزی، دانشگاه آزاد اسلامی واحد ساوه، مرکزی، ایران، 1: 2-5.
قاسم احمد ل. 1392. مروری بر 7 الگوریتم برتر داده‌کاوی در پیش‌بینی بقا، تشخیص و عود بیماران مبتلا به سرطان پستان. بیماری‌های پستان ایران، 6(1): 53-61.
کارگر ش.، و مکرم م. 1395. تعیین مهم‌ترین عوامل مؤثر بر چربی شیر گاوهای هلشتاین با استفاده از الگوریتم انتخاب ویژگی. پژوهش در نشخوارکنندگان، 4(4): 1-18.
مرتضوی ا.، قادری زفره‌ای م.، ترابی آ.، امیری زاخت ک.، و صمدیان ف. 1397. تحلیل بیزی فراسنجه‌های ژنتیکی صفات جفت‌ماندگی و سخت‌زایی در گاوداری فکا. پژوهش‌های تولیدات دامی، 9(19): 93-101.
Adamczyk K., Zaborski D., Grzesiak W., Makulska J. and Jagusiak W. 2016. Recognition of culling reasons in Polish dairy cows using data mining methods. Computers and Electronics in Agriculture, 127: 26-37.
Berry D., Harris B., Winkelman A. and Montgomerie W. 2005. Phenotypic associations between traits other than production and longevity in New Zealand dairy cattle. Journal of Dairy Science, 88(8): 2962-2974.
Borecki M., Korwin-Pawłowski M. L., Bebłowska M., Szmidt M., Urbańska K., Kalenik J., Chudzian L., Szczepański Z., Kopczyński K., Jakubowski A. and Szmidt A. J. 2010. Capillary microfluidic sensor for determining the most fertile period in cows. Acta Physica Polonica A, 118(6): 1093-1099.
Breiman L. 1996. Bagging predictors, Machine Learning, 24: 123-140.
Cavero D., Tolle K. H., Henze C., Buxade C. and Krieter J.  2008. Mastitis detection in dairy cows by application of neural networks. Livestock Science, 114: 280-286.
Chen L. J., Cui L. Y., Xing L. and Han L. J. 2008. Prediction of the nutrient content in dairy manure using artificial neural network modeling. Journal of Dairy Science, 91: 4822-4829.
Chen L. J., Xing L. and Han L. J. 2009. Quantitative termination of nutrient content in poultry manure by near infrared spectroscopy based on artificial neural networks. Poultry Science, 88: 2496-2503.
Coleman W., Thayne V. and Dailey R. A. 1985. Factors affecting reproductive performance of dairy cows. Journal of Dairy Science, 68: 1793-1803.
Curtis C. R., Erb H. N., Sniffen C. J., Smith R. D. and Kronfeld D. S. 1985. Path analysis of dry period nutrition postpartum metabolic and reproductive disorders, and mastitis in Holstein cows. Journal of Dairy Science, 68: 2347-2360.
Dash M. and Liu H. 2003. Consistency-based search in feature selection. Artificial Intelligence, 151: 155-176.
De Maturana E. L., Gianola D., Rosa G. J. M. and Weigel K. A. 2009. Predictive ability of models for calving difficulty in US Holsteins. Journal of Animal Breeding and Genetics, 126: 177-188.
Dematawewa C. and Berger P. 1998. Genetic and phenotypic parameters for 305-day yield, fertility, and survival in Holsteins. Journal of Dairy Science, 10: 2700-2709.
Gao X., Xue H., Pan X. and Luo X. 2020. Polymorphous bovine somatic cell recognition based on feature fusion. International Journal of Pattern Recognition and Artificial Intelligence, 20: 5-32.
Ghavi-Hossein-Zadeh N. 2014. Effect of dystocia on the productive performance and calf stillbirth in Iranian Holsteins. Journal of Agricultural Science and Technology, 16: 69-78.
Gorczyca M. T. and Gebremedhin K. G. 2020. Ranking of environmental heat stressors for dairy cows using machine learning algorithms. Computers and Electronics in Agriculture, 168: 105-124.
Gorgulu O. 2012. Prediction of 305-day milk yield in Brown Swiss cattle using artificial neural networks. Journal of Animal Science, 42(3): 280-287.
Grzesiak W., Lacroix R., Wojcik J. and Blaszczyk P. 2003. A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records Canadian Journal of Animal Science, 83: 307-310.
Grzesiak W., Zaborski D., Sablik P., Zukiewicz A., Dybus A. and Szatkowska I. 2010. Detection of cows with insemination problems using selected classification models. Computers and Electronics in Agriculture, 74(2): 265-273.
Hall M. A. 2015. Correlation-based Feature Subset Selection for Machine Learning. Ph.D. dissertation of Philosophy at the University of Waikato Hamilton, New Zealand.
Heinrichs A. J. 1993. Raising replacements to meet the needs of the 21st century. Journal of Dairy Science, 76: 3179-3187.
Hosseinalizadeh M., Kariminejad N., Chen W., Pourghasemi H. R., Alinejad M., Behbahani A. M. and Tiefenbacher J. P. 2019. Gully headcut susceptibility modeling using functional trees, naïve Bayes tree, and random forest models. Geoderma, 342: 1-11.
Hosseinia P, Edrisi M, Edriss M. A. and Nilforooshan M. A. 2007. Prediction of second parity milk yield and fat percentage of dairy cows based on first parity information using neural networks system. Journal of Applied Science, 7: 3274-3279.
Kohavi R. 1996. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. Second International Conference on Knoledge Discovery and Data Mining, 10: 202-207.
Krieter J., Stamer E. and Junge W. 2006. Control charts and neural networks for oestrus detection in dairy cows. Lecture Notes in Informatics, 1: 133-136.
Meyer C. L., Berger P. J., Koehler K. J., Thompson J. R. and Sattler C. G. 2001. Phenotypic trends in incidence of stillbirth for Holsteins in the United States. Journal of Dairy Science, 84(2): 515-523.
Morrison D. G., Humes P. E., Keith N. K. and Godke R. A. 1985. Discriminant analysis for predicting dystocia in beef cattle Derivation and validation of a prebreeding prediction model. Journal of Animal Science, 60(3): 617-621.
Naseriparsa M., Bidgoli A. M. and Varaee T. 2014. A hybrid feature selection method to improve performance of a group of classification algorithms. International Journal of Computer Applications, 69: 28-35.
Nguyen Q. T., Fouchereau R., Frenod E., Gerard C. and Sincholle V. 2020. Comparison of forecast models of production of dairy cows combining animal and diet parameters. Computers and Electronics in Agriculture, 170: 105-258.
Nielen M., Spigt M. H., Schukken Y. H., Deluyker H. A., Maatje K. and Brand A. 1995. Application of  neural network to analyse online milking parlour data for the detection of clinical mastitis in dairy cows. Preventive Veterinary Medicine, 22: 15-28.
Njubi D. M., Wakhungu J. and Badamana M. S. 2009. Milk yield prediction in Kenyan Holstein-Friesian cattle using computer neural networks system. Livestock Research for Rural Development, 21(4): 46-51.
Oddy V. H., Gooden J. M. and Annison E. F. 1984. Partitioning of nutrients in Merino ewes: contribution of skeletal muscle, the pregnant uteruses and lactating mammary gland to total energy expenditure. Australian Journal of Biological Science, 37: 375-388.
Olson K., Cassell B., McAllister A. and Washburn S. 2009. Dystocia, stillbirth, gestation length, and birth weight in Holstein, Jersey, and reciprocal crosses from a planned experiment. Journal of Dairy Science, 12: 6167-6175.
Pastell M. E. and Kujala M. 2007. A probabilistic neural network model for lameness detection. Journal of Dairy Science, 90: 2283- 2292.
Piwczynski, D., Nogalski, Z. and Sitkowska, B. 2013. Statistical modeling of calving ease and stillbirths in dairy cattle using the classification tree technique. Livestock Scince, 154: 19-27.
Purohit G. 2006. Dystocia in the sheep and goat-A Review. Indian Journal of Small Ruminants, 12(1): 1-12.
Qin Z. and Lawry J. 2005. Decision tree learning with fuzzy labels. Information Sciences, 172: 91-129.
Ray D. E., Halbach T. J. and Armstrong D. V. 1992. Season and lactation number effects on milk production and reproduction of dairy cattle in Arizona. Journal of Dairy Science, 75: 2979-2983.
Salehi F., Lacroix R., Yang X. Z. and Wade K. M. 1997. Effects of data preprocessing on the performance of artificial neural networks for dairy yield prediction and cow culling classification. Trans ASAE, 40(3): 839-846.
Salehi F. Lacroix R. and Wade K. M. 1998. Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks. Computers and Electronics in Agriculture, 20: 199-213.
Sanzogni L. and Kerr D. 2001. Milk production estimates using feed forward artificial neural networks. Computers and Electronics in Agriculture, 32: 21-30.
Schmidt G. H. and Van Vleck L. D. 1982. Principles of dairy science. Surjeet publication Kolhapur Road, Kamla Mager, Delhi, India, 7: 90-95.
Shahinfar S., Mehrabani-Yeganeh H., Lucas C., Kalhor A., Kazemian M. and Weigel K. A. 2012. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems. Computer and Mathematical Methods in Medicine, 2: 127130.
Shahriar M. S., Smith D., Rahman A., Freeman M., Hills J., Rawnsley R. and Bishop Hurley G. 2016. Detecting heat events in dairy cows using accelerometers and unsupervised learning. Computers and Electronics in Agriculture, 128: 20-26.
Silva H. M., Wilcox C. J. and Thatcher W. W. 1992. Factors affecting days open, gestation length, and calving interval in Florida dairy cattle. Journal of Dairy Science, 75: 288-293.
Sun Z. 2008. Application of artificial neural networks in early detection of mastitis from improved data collected on line by robotic milking stations. Ph.D. Dissertation, Lincoln University, New Zealand.
Wang E. and Samarasinghe S. 2005. Online detection of mastitis in dairy herds using artificial neural networks. https://researcharchive.lincoln.ac.nz/handle/10182/5444.
Yang X. Z., Lacroix R. and Wade K. M. 1999. Neural detection of mastitis from dairy herd improvement records. Transactions of the ASAE, 42: 1063-1071.
Yang X. Z., Lacroix R. and Wade K. M. 2000. Investigation into the production and conformation traits associated with clinical mastitis using artificial neural networks. Canadian Journal of Animal Science, 80: 415-426.
Zaborski D. and Grzesiak W. 2011a. Detection of heifers with dystocia using artificial neural networks with regard to ERalpha-BGLI, ERalpha-SNABI and CYP19-PVUII genotypes. Acta Scientiarum Polonorum. Zootechnica, 10(2): 455-408.
Zaborski D. and Grzesiak W. 2011b. Detection of difficult calving in dairy cows using neural classifier. Archiv Tierzucht, 54(5): 477-489.
Zaborski D., Grzesiak W., Kotarska K., Szatkowska I. and Jedrzejczak M. 2014. Detection of difficult calvings in dairy cows using boosted classification trees. Indian Journal of Animal Research, 48(5): 452-458.
Zaborski D., Grzesiak W. and Pilarczyk R. 2016. Detection of difficult calvings in the Polish Holstein-Friesian Black-and-White heifers.  Journal of Applied Animal Research, 44(1): 42-53.