بهبود ارزش تغذیه ای کاه گندم با اعمال روش عمل‌آوری شیمیایی-اکسیداسیون در شرایط آزمایشگاهی برای استفاده در تغذیه نشخوارکنندگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک بیوسیستم، گروه فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران

2 استاد، گروه مهندسی فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران

3 دانشیار، گروه مهندسی فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران

4 دانشیار، مؤسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

5 استادیار، گروه علوم دام و طیور، پردیس ابوریحان، دانشگاه تهران

چکیده

در این پژوهش از اکسیدکننده قوی ازن به ‌منظور افزایش لیگنین­زدایی و از قلیای اوره به­ عنوان منبع نیتروژنی برای بهبود ارزش تغذیه­ای کاه گندم استفاده شد. آزمایش با چهار تیمار و سه تکرار در قالب طرح کاملاً تصادفی انجام شد. تیمارهای آزمایشی کاه گندم شامل: 1- نمونه بدون عمل‌آوری، 2- عمل‌آوری شده با اوره (مقدار سه درصد وزنی، 24 ساعت)، 3- عمل‌آوری شده با ازن (سه گرم بر ساعت، 45 دقیقه)، و 4- عمل‌آوری شده ترکیبی با ازن (سه گرم بر ساعت، 45 دقیقه) و اوره (سه درصد وزنی، 24 ساعت) بودند. نتایج نشان داد که تیمارهای عمل‌آوری شده با ازن منجر به بهبود قابل ملاحظه‌ای (01/0P<) در ارزش تغذیه‌ای کاه گندم تیمارهای ازن و ازن-اوره نسبت به نمونه بدون عمل‌آوری شدند. بر اساس نتایج، عمل‌آوری ترکیبی ازن-اوره نسبت به عمل‌آوری با اوره تنها و ازن تنها منجر به کاهش 28/18، 97/7 و 50 درصدی به ‌ترتیب در الیاف نامحلول در شوینده خنثی، الیاف نامحلول در شوینده اسیدی و لیگنین، افزایش 3/333، 5/22، 67/23 و 34/35 درصدی به ‌ترتیب در پروتئین خام، نیتروژن آلی پیوندی، مواد مغذی قابل هضم و ارزش خوراک نسبی شد. همچنین عمل‌آوری با ازن-اوره سبب افزایش 21/100، 76/63، 93/34 و 43/46 درصدی به ‌ترتیب در گاز تولیدی (24 ساعت انکوباسیون)، انرژی قابل سوخت و ساز، قابلیت هضم ماده آلی و اسیدهای چرب کوتاه زنجیر نسبت به نمونه بدون عمل‌آوری شد. از نتایج پژوهش حاضر می‌توان استباط کرد که روش عمل‌آوری ترکیبی ازن-اوره با روش­های سنتی و نوین عمل‌آوری قابل مقایسه است و می­تواند به­ عنوان جایگزین مناسبی در عمل‌آوری کاه­های کشاورزی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improving the nutritive value of wheat straw by applying the combined chemical-oxidation treatment in vitro for the use in ruminant nutrition

نویسندگان [English]

  • M. Ghorbani 1
  • M. H. Kianmehr 2
  • A. Arabhosseini 3
  • E. Sarlaki 1
  • A. Aghashahi 4
  • A. Asadi Alamouti 5
1 Ph.D. Student of Mechanical Engineering of Biosystems, Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
2 Professor, Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
3 Associate Professor, College of Abouraihan, University of Tehran, Tehran, Iran
4 Associate Professor, National Institute of Animal Science Research, Agricultural Research, Education and Promotion Organization, Karaj, Iran
5 Assistant Professor, Department of Animal and Poultry Science, College of Abouraihan, University of Tehran, Tehran, Iran
چکیده [English]

In this research, an ozone gas-based oxidation technique for enhancement of delignification along with urea-based chemical treatment as a nitrogen source was used to improve the nutritional value of wheat straw. The experiments were performed with four treatments and three replications in a completely randomized design. Experimental treatments of wheat straw were 1. Untreated sample, 2. Separate treatment with urea (3% w/w, 24 h), 3. Separate treatment with ozone (3 g/h, 45 min), and 4. Combined treatment of ozone (3 g/h, 45 min) with urea (3% w/w, 24 h). The results showed that ozonized treatments had a significant improvement (P<0.01) in the nutritional value of wheat straw compared to the untreated and urea-treated samples. Also, According to the results, the combined ozone-urea treatment increased the nutritional value of wheat straw more than urea and ozone treatment alone. The combined ozone-urea treatment caused a reduction of 18.28%, 7.97%, and 50% in NDF, ADF, and ADL, respectively. Also, improving the nutritional value was observed by increasing 333.3%, 22.5%, 23.67%, and 35.34% in CP, bonded organic-N, TDN, and RFV, respectively, and improvement of gas production parameters were obtained by increasing 100.21%, 63.76%, 34.93%, and 46.43% for GP24, ME, IVOMD24, and SCFA, respectively, as compared to control sample. Overall, from the results of this study, it can be concluded that combined ozone-urea treatment is comparable to traditional and existing novel treatment methods, which due to its ability to perform at ambient temperature, atmospheric pressure, and short-time treatment, can be used as a suitable alternative in agricultural straw treatments.

کلیدواژه‌ها [English]

  • Urea
  • In vitro gas production
  • FT-IR spectroscopy
  • Wheat straw
  • Ozon gas
تاجی­نیا ر.، کیانمهر م. ح.، سرلکی ا.، شریف پاقلعه ع.، و میر سعید قاضی ح. 1398. استخراج هیومیک اسید از پسماندهای کمپوست قارچ به­کمک تیمار قلیایی و فراپالایش غشایی. مهندسی بیوسیستم ایران، 50(4): 847-861.
دانش س. م. 1390. تعیین ارزش غذایی کاه غلات و حبوبات و اثر عمل­آوری کاه گندم با اوره یا آمونیاک بر میزان مصرف، قابلیت هضم و پارامترهای تخمیری در گوسفند بلوچی. پایان­نامه کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.
سرلکی ا.، و ابونجمی م. 1398. اصالت­سنجی و تشخیص تقلب مواد غذایی بر اساس تکنیک­های انگشت­نگاری و ابزارهای شیمی­سنجی. بهداشت مواد غذایی، 9(3): 89-112.
سرلکی ا.، سخندان توماج م.، شریف پاقلعه ع.، کیانمهر م. ح.، و نیکوصفت ا. 1398. استخراج هیومیک اسید از زغال­سنگ­های لیگنایت با استفاده از راکتورهای مخزنی همزن­دار (STRs): ارزیابی پارامترهای فرآیند و خواص محصول نهایی. تحقیقات آب و خاک ایران، 50(5): 1111-1125.
سرلکی ا.، کیانمهر م. ح.، قربانی م.، و آزادگان ب. 1400. بهینه‌سازی فرآیند پلت‌سازی کمپوست باگاس نیشکر به‌کمک روش سطح پاسخ و ارزیابی نرخ آزادسازی نیتروژن از پلت. تحقیقات آب و خاک ایران، 52(4): 1117-1133.
شریف پاقلعه ع.، سرلکی ا.، کیانمهر م. ح.، و شکیبا ن. 1396. مطالعه طیفی، ساختاری و شیمیایی هیومیک اسیدهای استخراج‌شده از زغال‌سنگ‌های معادن ایران. تحقیقات آب و خاک ایران، 48(5): 1145-1158.
صادقی ص.، ولی­زاده ر.، ناصریان ع. ع.، و طهماسبی ع. 1392. اثر جایگزینی سیلوی ذرت با سطوح متفاوت کاه گندم عمل­آوری شده با گاز آمونیاک برعملکرد، فراسنجه­های تخمیر شکمبه­ای و فراسنجه­های خونی تلیسه­های هلشتاین. پژوهشهای علوم دامی ایران، 5(4): 325-334.
قاسمی ا. 1391. بهبود ارزش تغذیه­ای کاه غلات (برنج، جو و گندم) با روش­های شیمیایی و زیستی جهت استفاده در تغذیه نشخوارکنندگان. رساله دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران.
قربانی م.، ابونجمی م.، و قربانی جاوید م. 1394. امواج فراصوتی روشی نوین در استخراج ترکیب­های گیاهی. صوت و ارتعاش، 4(8): 85-99.
قربانی م.، کیانمهر م. ح.، عرب حسینی ا.، اسدی الموتی ع.، و صادقی ر. 1400. پیش­فرآوری ازن­کافت کاه گندم با هدف بهبود لیگنین­زدایی: استفاده از روش سطح پاسخ برای مدل­سازی و بهینه­سازی فرآیند. مهندسی بیوسیستم ایران، 52(1): 37-53.
قربانی م.، کیانمهر م. ح.، عرب حسینی ا.، سرلکی ا.، اسدی الموتی ع.، و صادقی ر. a1398. ازن­کافت: یک تکنیک اکسیداسیون نوین و مؤثر برای پیش­فرآوری زیست­توده­های لیگنوسلولزی، دوازدهمین کنگره ملی مهندسی مکانیک بیوسیستم و مکانیزاسیون ایران، 16-18 بهمن­ماه، دانشگاه شهید چمران اهواز، اهواز، ایران.
قربانی م.، کیانمهر م. ح.، عرب حسینی ا.، سرلکی ا.، اسدی الموتی ع.، و صادقی، ر. b1398. اصول سیستم­های تولید، اعمال و کنترل پلاسما و کاربردهای آن در صنایع غذایی. دوازدهمین کنگره ملی مهندسی مکانیک بیوسیستم و مکانیزاسیون ایران، 18-16 بهمن­ماه، دانشگاه شهید چمران اهواز، اهواز، ایران.
قربانی م.، کیانمهر م. ح.، عرب حسینی ا.، سرلکی ا.، اسدی الموتی ع.، و صادقی ر. c1398. مروری بر ازن: ویژگی­ها، آثار، سازوکارهای واکنش، جنبه­های زیست­محیطی و ایمنی در فرآوری مواد غذایی. دوازدهمین کنگره ملی مهندسی مکانیک بیوسیستم و مکانیزاسیون ایران، 18-16 بهمن­ماه، دانشگاه شهید چمران اهواز، اهواز، ایران.
زرین م.، صمدیان ف.، استادیان ص.، احمدپور ا. 1397. اثر فرآوری کنگر با اوره و ملاس بر ترکیب شیمیایی و قابلیت هضم سیلاژ آن. تحقیقات تولیدات دامی، 7(1): 13-21.
Abebe G., Merkel R. C., Animut G., Sahlu T. and Goetsch A. L. 2004. Effects of ammoniation of wheat straw and supplementation with soybean meal or broiler litter on feed intake and digestion in yearling Spanish goat wethers. Small Ruminant Research, 51(1): 37-46.
Ai P., Zhang X., Dinamarca C., Elsayed M., Yu L., Xi J. and Mei Z. 2019. Different effects of ozone and aqueous ammonia in a combined pretreatment method on rice straw and dairy manure fiber for enhancing biomethane production. Bioresource Technology, 282: 275-284.
AOAC. 1998. Officinal Methods of Analysis. 16th Edition, AOAC International, Gaithersburg, MD.
AOCS. 2005. Official procedure, approved procedure Am 5-04, Rapid determination of oil/fat utilizing high temperature solvent extraction. Journal of the American Oil Chemists' Society, Urbana.
ASAE Standards: ASAE S358.2. 2003. Moisture measurement-forages. Pp. 607-608.
ASAE Standards: ASAE S319.3. 2006. Method of determining and expressing fineness of feed materials by sieving. Pp. 601-605.
Bals B., Murnen H., Allen M. and Dale B. 2010. Ammonia fiber expansion (AFEX) treatment of eleven different forages: Improvements to fiber digestibility in vitro. Animal Feed Science and Technology, 155(2): 147-155.
Barros R. da R. O. de., Paredes R. de S., Endo T., Bon E. P. da S. and Lee S. H. 2013. Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresource Technology, 136: 288-294.
Beauchemin K. A., Ribeiro G. O., Ran T., Marami Milani M. R., Yang W., Khanaki H., Gruninger R., Tsang A. and McAllister T. A. 2019. Recombinant fibrolytic feed enzymes and ammonia fibre expansion (AFEX) pretreatment of crop residues to improve fibre degradability in cattle. Animal Feed Science and Technology, 256: 114260.
Ben-Ghedalia D., Shefet G. and Dror Y. 1983. Chemical treatments for increasing the digestibility of cotton straw: 1. Effect of ozone and sodium hydroxide treatments on rumen metabolism and on the digestibility of cell walls and organic matter. The Journal of Agricultural Science, 100(2): 393-400.
Ben-Ghedalia D. and Miron J. 1981a. Effect of sodium hydroxide, ozone and sulphur dioxide on the composition and in vitro digestibility of wheat straw. Journal of the Science of Food and Agriculture, 32(3): 224-228.
Ben-Ghedalia D. and Miron J. 1981b. The effect of combined chemical and enzyme treatments on the saccharification and in vitro digestion rate of wheat straw. Biotechnology and Bioengineering, 23(4): 823-831.
Binder A., Pelloni L. and Fiechter A. 1980. Delignification of straw with ozone to enhance biodegradability. European Journal of Applied Microbiology and Biotechnology, 11(1): 1-5.
Blümmel M. and Becker K. 1997. The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. British Journal of Nutrition, 77(5): 757-768.
Blümmel M. and Rao P. 2006. Economic value of sorghum stover traded as fodder for urban and peri-urban dairy production in Hyderabad, India. International Sorghum and Millets Newsletter, 47: 97-100.
Bule M. V., Gao A. H., Hiscox B. and Chen S. 2013. Structural modification of lignin and characterization of pretreated wheat straw by ozonation. Journal of Agricultural and Food Chemistry, 61(16): 3916-3925.
FAO. 2020. Crop Prospects and Food Situation - Quarterly Global Report No. 1, March 2020, Rome.
Gebretsadik G. and Kebede K. 2011. Feed utilization, digestibility and carcass parameters of Tigray highland sheep fed urea treated wheat straw supplemented with mixtures of wheat bran and noug seed cake, in Southern Tigray, Ethiopia. Livestock Research for Rural Development, 23(9).
Getachew G., Crovetto G. M., Fondevila M., Krishnamoorthy U., Singh B., Spanghero M., Steingass H., Robinson P. H. and Kailas M. M. 2002a. Laboratory variation of 24 h in vitro gas production and estimated metabolizable energy values of ruminant feeds. Animal Feed Science and Technology, 102(1): 169-180.
Getachew G., Makkar H. P. S. and Becker K. 2002b. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. Journal of Agricultural Science, 139(3): 341-352.
Ghorbani M., Aboonajmi M., Ghorbani Javid M. and Arabhosseini A. 2017. Optimization of ultrasound-assisted extraction of ascorbic acid from fennel (Foeniculum vulgare) seeds and evaluation its extracts in free radical scavenging. Agricultural Engineering International: CIGR Journal, 19(4): 209-218.
He L. W., Meng Q. X., Li D. Y., Wang F. and Ren L. P. 2015. Effect of steam explosion on in vitro gas production kinetics and rumen fermentation profiles of three common straws. Italian Journal of Animal Science, 14(4): 4076.
Hendriks A. T. W. M. and Zeeman G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1): 10-18.
Jung H. J. G., Varel V. H., Weimer P. J. and Ralph J. 1999. Accuracy of klason lignin and acid detergent lignin methods as assessed by bomb calorimetry. Journal of Agricultural and Food Chemistry, 47(5): 2005-2008.
Jeranyama P. and Garcia A. 2004. Understanding relative feed value (RFV) and relative forage quality (RFQ). Extension Extra. Paper 352.
Kádár Z., Schultz-Jensen N., Jensen J. S., Hansen M. A. T., Leipold F. and Bjerre A. B. 2015. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment. Biomass and Bioenergy, 81: 26-30.
Khejornsart P. and Wanapat M. 2010. Effect of Chemical treatment of rice straw on rumen fermentation characteristic, anaerobic fungal diversity in vitro. Journal of Animal and Veterinary Advances, 9(24): 3070-3076.
Kumar A. K. and Sharma S. 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1): 7.
Mamleeva N. A., Autlov S. A., Bazarnova N. G. and Lunin V. V. 2009. Delignification of softwood by ozonation. Pure and Applied Chemistry, 81(11): 2081-2091.
Mason V. C., Cook J. E., Dhanoa M. S., Keene A. S., Hoadley C. J. and Hartley R. D. 1990. Chemical composition, digestibility in vitro and bio degradability of grass hay oven-treated with different amounts of ammonia. Animal Feed Science and Technology, 29: 237-249.
Mason V. C., Hartley R. D., Keene A. S. and Cobby J. M. 1988. The effect of ammoniation on the nutritive value of wheat. barley and oat straws. I. Chances in chemical comoosition in relation to digertibihty in vitro and cell wall dcgradablity. Animal Feed Science and Technology, 80: 159-171.
McDougall E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochemical Journal, 43(1): 99-109.
Menke K. and Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28: 7-55.
Milad I. S., Rymer C. and Radley R. W. 2010. Effects of ammonia treatment and undegradable protein supplementation on nutrient digestion of sheep fed onwheat straw based diets. Archiva Zootechnica, 13(1): 39-46.
Miron J. and Ben-Ghedalia D. 1981. Effect of chemical treatments on the degradability of cotton straw by rumen microorganisms and by fungal cellulase. Biotechnology and Bioengineering, 23(12): 2863-2873.
Mokomele T., da Costa Sousa L., Bals B., Balan V., Goosen N., Dale B. E. and Görgens J. F. 2018. Using steam explosion or AFEXTM to produce animal feeds and biofuel feedstocks in a biorefinery based on sugarcane residues. Biofuels, Bioproducts and Biorefining, 12(6): 978-996.
National Research Council. 2001. Nutrient requirements of dairy cattle: Seventh Revised Edition, 2001. Washington, DC: The National Academies Press. https://doi.org/10.17226/9825.
Olkkonen C., Tylli H., Forsskåhl I., Fuhrmann A., Hausalo T., Tamminen T., Hortling B. and Janson J. 2000. Degradation of model compounds for cellulose and lignocellulosic pulp during ozonation in aqueous solution. Holzforschung, 54(4): 397-406.
Sarlaki E., Sharif Paghaleh A., Kianmehr M. H. and Asefpour Vakilian K. 2019. Extraction and purification of humic acids from lignite wastes using alkaline treatment and membrane ultrafiltration. Journal of Cleaner Production, 235: 712-723.
Sarlaki E., Sharif Paghaleh A., Kianmehr M. H. and Asefpour Vakilian K. 2020. Chemical, spectral and morphological characterization of humic acids extracted and membrane purified from lignite. Chemistry and Chemical Technology, 14(3): 353-361.
Sarlaki E., Sharif Paghaleh A., Kianmehr M. H. and Asefpour Vakilian K. 2021. Valorization of lignite wastes into humic acids: Process optimization, energy efficiency and structural features analysis. Renewable Energy, 163: 105-122.
Sarwar M., Khan M. A. and Iqbal Z. 2002. Feed resources for livestock in Pakistan. Intentional Journal of Agriculture, 4: 186-192.
Singh B. and Deol G. 1985. Effect of locality and diameter class on chemical composition of Quercus leucotrichophora A. Camus ex Bahadur seeds. The Indian Forester, 5: 301-304.
Sipponen M. H. and Österberg M. 2019. Aqueous ammonia pre-treatment of wheat straw: Process optimization and broad spectrum dye adsorption on nitrogen-containing lignin. Frontiers in Chemistry, 7: 545.
Talebnia F., Karakashev D. and Angelidaki I. 2010. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13): 4744-4753.
Travaini R., Martín-Juárez J., Lorenzo-Hernando A. and Bolado-Rodríguez S. 2016. Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology, 199: 2-12.
Tyhoda L. 2008. Synthesis, characterisation and evaluation of slow nitrogen release organic soil conditioners from south African technical lignins. Ph.D. dissertation, Stellenbosch University.
Van Soest P. J., Robertson J. B. and Lewis B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10): 3583-3597.
Yalchi T. 2010. Effects of urea and aqueous ammonia treatment on the nutritive value of triticale. Journal of Food, Agriculture and Environment, 8(1): 69-72.
Zhu B., Gikas P., Zhang R., Lord J., Jenkins B. and Li X. 2009. Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresource Technology, 100(3): 1122-1129.