اثر سطح و روش فرآوری دانه کتان بر عملکرد، شاخص‌های رشد اسکلتی، سلامت و رفتار نشخوار گوساله‌های شیرخوار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته مقطع دکتری، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استاد، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استادیار، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

در این پژوهش جهت بررسی اثر سطح و روش فرآوری دانه کتان بر عملکرد گوساله­های شیرخوار، از 35 رأس گوساله نر تازه متولد شده نژاد هلشتاین که وزن اولیه آنها 5/4±41 کیلوگرم بود، استفاده شد. این آزمایش در قالب طرح کاملاً تصادفی با هفت تیمار و پنج تکرار انجام شد. تیمارها شامل: 1- گروه شاهد، 2- تیمار حاوی پنج درصد دانه کتان خام، 3- تیمار حاوی 10 درصد دانه کتان خام، 4- تیمار حاوی پنج درصد دانه کتان میکرونیزه، 5- تیمار حاوی 10 درصد دانه کتان میکرونیزه، 6- تیمار حاوی پنج درصد دانه کتان اکسترود و 7- تیمار حاوی 10 درصد دانه کتان اکسترود بود. کل دوره آزمایشی 60 روز شامل 14 روز دوره عادت­پذیری بود. امتیاز­دهی قوام مدفوع به عنوان شاخص سلامت دام به­صورت روزانه برای هر یک از گوساله­ها در نظر گرفته ­شد. اندازه­گیری میزان شاخص­های رشد اسکلتی با متر و کولیس در ابتدا و انتهای دوره اندازه­گیری شد. جهت بررسی تأثیر تیمارهای آزمایشی بر عملکرد گوساله­ها، میزان ماده خشک مصرفی، افزایش وزن روزانه و ضریب تبدیل خوراک نیز اندازه­گیری شد. تیمارهای آزمایشی تأثیر معنی­داری بر میزان مصرف خوراک روزانه، افزایش وزن روزانه و ضریب تبدیل خوراک نداشت. همچنین شاخص­های رشد اسکلتی، قوام مدفوع و رفتار نشخوار تحت تأثیر تیمارهای آزمایشی قرار نگرفت. با توجه به نتایج این تحقیق، استفاده از کتان فرآوری شده تأثیر منفی بر عملکرد، شاخص­های رشد اسکلتی و سلامت گوساله­ها نداشته است و می­توان از کتان اکسترود و میکرونیزه در سطح 10 درصد در جیره گوساله­های شیرخوار به عنوان منبع پروتئین و انرژی استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of flaxseed level and processing method on performance, skeletal growth indices, health, and rumination behavior of suckling calves

نویسندگان [English]

  • M. Hossein Abadi 1
  • N. M. Torbati Nejad 2
  • T. Ghoorchi 2
  • A. H. Toghdory 3
1 Former Ph.D. Student, Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
2 Professor, Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
3 Assistant Professor, Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
چکیده [English]

Introduction: Flax products (seed and meal) are one of the sources of energy and protein for ruminants. Although flaxseed is a very inexpensive and affordable source of omega-3s, more than 50% of its fatty acids are made from alpha-linolenic acid, but it cannot be used at high levels due to its anti-nutritional properties. Flaxseed processing improves nutrient consumption while reducing the negative effects of anti-nutritional substances such as lintine and making food more palatable. Various methods are used to process and improve the flaxseed digestion process, such as micronization and extrusion. The extrusion process is the process of processing high-temperature materials in a short time and is done by a combination of moisture, heat, mechanical energy, and pressure. Extrusion is also a technical function by which feed is processed, extruded, and cooked under a constant increase in pressure and then expanded due to a sudden pressure drop. Heat treatment applied during the extrusion process reduces the access of rumen bacteria to the fat in the diet by denaturing the protein matrix around fat droplets in oilseeds such as flaxseed and thus can reduce fatty acids. Microwave by microwave can be done after adding 25% moisture to the grains for three minutes in a device containing an infrared lamp. It was also found that micronization could be used to increase the degradable protein content of the rumen. This study was performed to evaluate the effect of flaxseed level and processing method on performance, skeletal growth indices, health, and ruminant behavior of suckling calves.
Materials and methods: In this study, to investigate the effect of using different levels and methods of flaxseed processing on the performance of suckling calves, 35 newborn Holstein male calves with an initial weight of 41±4.5 kg were used. This experiment was performed in a completely randomized design with seven treatments and five replications. Treatments included: 1. Control, 2. The treatment contained 5% of raw flaxseed, 3. The treatment contained 10% of raw flaxseed, 4. The treatment contained 5% of micronized flaxseed, 5. The treatment contained 10% of micronized flaxseed, 6. The treatment contained 5% of extruded flaxseed, and 7. The treatment contained 10% of extruded flaxseed. The total trial period was 60 days, which included 14 days of adaptation. Stool consistency scoring was considered as a daily livestock health indicator for each calf. Measurement of skeletal growth rate was done by meter and caliper at the beginning and end of the period. To evaluate the effect of experimental treatments on calf performance, dry matter intake, daily weight gain, and feed conversion ratio were also measured.
Results and discussion: Experimental treatments had no significant effect on daily feed intake, daily weight gain, and feed conversion ratio. Also, the growth of skeletal indices, fecal consistency, and rumination behavior was not affected by experimental treatments. The lack of effect on food intake probably indicates that the amount of linseed fatty acids used has a minimal mechanism of short-term regulation of feed intake. Oily seeds such as flaxseed contain eicosapentaenoic and docosahexaenoic fatty acids, both of which are active derivatives of linolenic acid. It is known that these oxygenated metabolites play an important role in the growth and development of infant animals, especially the development of their nervous system. However, eicosapentaenoic and docosahexaenoic fatty acids may have a lower effect on feed efficiency during this period of calves' life. In general, the duration of chewing is reduced by decreasing the size of particles and the content of insoluble fibers in neutral detergent. The lower content of insoluble fibers in the neutral detergent and its chemical and physical nature may have reduced rumination and chewing activity. Probably, the changes in the rumination time may be related to the difference in the dry matter consumed and the digestibility of the nutrients, and the rumination activity can also be considered a factor to diagnose rumen health due to the stimulation of saliva secretion. The duration of chewing activity (sum of eating and ruminating) can be a good measure of rumen health.
Conclusions: According to the results of this study, the use of processed flax did not hurt the performance, skeletal growth indices, and health of calves. Extruded and micronized flax can be used at the 10% level in the diet of suckling calves as a source of protein and energy.

کلیدواژه‌ها [English]

  • Flaxseed
  • Processing method
  • Health
  • Performance
  • Suckling calf
Allen M. S. 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cows. Journal of Dairy Science, 83: 1598-1624.
Amini J., Danesh Mesgaran M., Vakili S. A. and Heravi Mosavi A. 2016. Antioxidant activity of linseed products: effects on metabolism and immune responses using in vitro and in vivo model systems. 7th Iranian Congress of Animal Science. (In Persian).
Araujo R. C., Pires A. V., Susin I., Mendes C. Q., Rodrigues G. H., Packer I. U. and Eastridge M. L. 2008. Milk yield, milk composition,eating behavior, and lamb performance of ewes fed diets containing soybeen hulls replacing coastcross (Cynodon species) hay. Journal of Animal Science, 86: 3511-3521.
Baldwin V. I. R. L., McLeod K. R., Klotz J. L. and Heitmann R. N. 2004. Rumen development, intestinal growth and hepatic metabolism in the pre- and post weaning ruminant. Journal of Dairy Science, 87: 55-65.
Debbie L. and Thiessen D. 2011. Optimization of feed peas, canola and flaxseed for aqua feeds. The Canadian prairie perspective. MCN Bioproducts Inc, 259-277.
Didarkhah M. 2013. Investigating the in vitro digestibility characteristics of glucogenic and lipogenic diets containing flaxseed and its effect on the physiological indicators of pregnancy in Baluchi ewes. Ph.D. dissertation in ruminant nutrition. The Ferdowsi University of Mashhad. (In Persian).
Farran T., Reinhardt C., Blasi D., Minton J., Elsasser T., Higgins J. and Drouillard J. 2008. Source of dietary lipid may modify the immune response in stressed feeder cattle. Journal of Animal Science, 86: 1382-1394.
Fasihi H. 2012. Interaction of n-6:n-3 ratio with level of Vitamin E of starter on performance and immunity responses of new born Holstein dairy calves. MSc thesis. Isfahan University of Technology. (In Persian).
Gagliostro G. and Chilliard Y. 1991. Duodenal rapeseed oil infusion in early and midlactation cows: Voluntary intake, milk production, and composition. Journal of Dairy Science, 74: 499-509.
Geraeily M. 2017. The effect of flaxseed oil on performance of dairy calves under heat stress conditions. MSc thesis. Gorgan University of Agricultural Sciences and Natural Resources.Iran. P. 106. (In Persian).
Ghaffari M. 2016. The effects of feeding processed Flaxseed on performance of Holstein calves. MSc thesis Department of Animal Science, Tehran University. (In Persian).
Ghasemi E., Azad-shahraki M. and Khoravesh M. 2017. Effect of different fat supplements on of dairy calves during cold season. Journal of Dairy Science, 100: 1-10.
Grant R. J., Colenbrander V. F. and Mertens D. R. 1990. Milk fat depression in dairy cows: role of particle size of alfalfa hay. Journal of Dairy Science, 73: 1823-1833.
Hill T. M., Bateman H. G., Aldrich J. M. and Schlotterbeck R. L. 2009. Effect of changing the essential and functional fatty acid intake of dairy calves. Journal of Dairy Science, 92: 670-676.
Hill T. M., Bateman H. G., Aldrich J. M., Quigley J. D. and Schlotterbeck R. L. 2015. Inclusion of tallow and soybean oil to calf starters fed to dairy calves from birth to four months of age on calf performance and digestion. Journal of Dairy Science, 98: 4882-4888.
Hill T. M., VandeHaar M. J., Sordillo L. M., Catherman D. R., Bateman H. G. and Schlotterbeck R. L. 2011. Fatty acid intake alters growth and immunity in milk-fed calves. Journal of Dairy Science, 94:3936-3948.
Hossein Abadi  M., Torbatinejad N. M., Ghoorchi T. and Toghdory A. H. 2020. Effects of feeding different levels of flaxseed on performance, nutrient digestibility and blood parameters of pre-weaning calves. Research on Animal Production, 11)28(: 67-74. (In Persian).
Huuskonen A., Khalili H., Kiljala J., Joki-Tokola E. and Nousiainen J. 2005. Effects of vegetable fats versus lard in milk replacers on feed intake, digestibility, and growth in Finnish Ayrshire bull calves. Journal of Dairy Science, 88: 3575-3581.
Innis S. M. 2007. Dietary (n-3) fatty acids and brain development. The Journal of Nutrition, 137: 855-859.
Karcher E., Hill T. M., Bateman H. G., Schlotterbeck R. L., Vito N., Sordillo L. M. and VandeHaar M. J. 2014. Comparison of supplementation of n-3 fatty acids from fish and flax oil on cytokine gene expression and growth of milk-fed Holstein calves. Journal of Dairy Science, 97: 2329-2337.
Kennelly J. J. 1996. The fatty acid composition of milk fat as influenced by feeding oilseeds. Journal of Animal Feed Science and Technology, 60: 137-152.
Khorasani G., Robinson P., De Boer G. and Kennelly J. J. 1991. Influence of canola fat on yield, fat percentage, Fatty acid profile, and nitrogen fractions in Holstein milk. Journal of Dairy Science, 74: 1904-1911.
Khorasani R. G. and Kennelly J. J. 1994. Influence of flaxseed on the nutritional quality of milk. Proceedings of the 55th Flax Inst. Conf. J. F. Carter, ed. North Dakota State University, Fargo, ND. Pp. 127-134.
Lachica M., Aguilera J. F. and Prieto C. 1997. Energy expenditure related to the act of eating in Granadina goats given diets of different physical form. British Journal of Nutrition, 77: 417-426.
Larson L. L., Owen F. G., Albright J. L., Appleman R. D., Lamb R. C. and Muller L. D. 1977. Guidelines toward more uniformity in measuring and reporting calf experimental data. Journal of Dairy Science, 60: 6-19.
Lashkari S., Azizi A. and Jahani Azizabadi H. 2017. The effects of different flax seed processing methods on yield, milk fatty acids pattern and nutrient digestibility in lactating cows. Journal of Animal Production Research, 27(4): 105-119. (In Persian).
Lessard M., Gagnon N. and Petit H. V. 2004. Immune response of postpartum dairy cows fed flaxseed. Journal of Dairy Science, 86: 2647-2657.
McDonald P., Edwards R. A., Greenhalgh J. F. D., Morgan C. A., Sinclair L. A. and Wilkinson R. G. 2011. Animal Nutrition. 7th ed. Longman Group UK, Harlow, UK. P. 693.
Mertens D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science, 80(7): 1463-1481.
Mortezaei A., Vakili A. and Danesh Mesgaran M. 2016. Evaluation of seasonal changes on milk composition and milk production of Holstein cows fed with flax seeds. Journal of Research in Ruminants, 4: 85-1020. (In Persian).
Mustafa A. F., Mckinnon J. J., Christensen D. A. and He T. 2002. Effects of micronization of flaxseed on nutrient disappearance in the gastrointestinal tract of steers. Animal Feed Science and Technology, 95: 123-132.
Naserian A. A., Saremi B., Bashteni M. and Furughi A. 2013. Nutrition management and breeding of calves (Translation). Third edition. Ferdowsi University Press, Mashhad. P. 408. (In Persian ).
National Research Council (NRC). 1973. Committee on Animal Nutrition; Center for Tropical Agriculture, University of Florida, and Department of Animal Science, University of Florida. P. 491.
Neveu C., Baurhoo B. and Mustafa A. 2014. Effect of feeding extruded flaxseed with different grains on the performance of dairy cows and milk fatty acid profile. Journal of Dairy Science, 97: 1-9.
Palmquist D. L. and Jenkins T. C. 1980. Fat in lactation rations: A Review. Journal of Dairy Science, 63: 1-14.
Petit H. V. and Cortes C. 2010. Milk production and composition, milk fatty acid profile, and blood composition of dairy cows fed whole or ground flaxseed in the first half of lactation. Journal of Animal and Feed Sciences, 158: 36-43.
Petit H. V., Cavalieri F. B., Santos G. T. D., Morgan J. and Sharpe P. 2008: Quality of embryos produced from dairy cows fed whole flaxseed and the success of embryo transfer. Journal of Dairy Science, 91: 1786-1790.
Rajabi Y., Chashni Dell Y. and Dirandeh A. 2016. The effect of feeding different sources of fat during the transition period on milk production and composition and blood parameters of Holstein dairy cows. Animal Production Research, 9: 92-100. (In Persian).
Ramezani M. 2018. The effect of extruded flaxseed and conjugated linoleic acid on performance, blood metabolites and immune response in milk-fed calves. MSc thesis, University of Mohaghegh Ardabili. (In Persian).
Retnani Y., Widiarti W., Amiroh I., Herawati L. and Satoto K. B. 2009. Storage capacity and palatability of wafer complete ration based on sugar cane top and bagasse on calves. Media Peternakan, 32: 130-136.
Sabahi N. and Vafadar Moghaddam M. R. 2009. Principles of new technology of livestock, poultry and aquaculture food industries. Sepehr Publishing Center. (In Persian).
SAS. 2001. Statistical Analysis System, User’s Guide: Statistics. Version 9.1. SAS Institute, Cary, NC, USA.
Spolare P., Joannis-Cassan C. and Duran E. 2005. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2): 87-96.
Thomas L. C., Wright T. C., Formusiak A., Cant J. P. and Osborne V. R. 2007. Use of flavored drinking water in calves and lactating dairy cattle. Journal of Dairy Science, 90: 3831-3837.
Van Soest P. J. 1994. Nutritional ecology of the ruminants. Cornell University Press, Ithaca, New York. Nebraska Beef Cattle Reports, 67A: 72-74.