مطالعه پویش کل ژنوم بر پایه‌ مدل هاپلوتیپ و تجزیه و تحلیل غنی‌سازی مجموعه-های ژنی مرتبط با سن اولین زایش در گاو نلور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک

چکیده

در این پژوهش از رکوردهای فنوتیپی صفت سن اولین گوساله­زایی گاوهای نلور برای مطالعه پویش ژنوم بر پایه تجزیه و تحلیل غنی­سازی جهت شناسایی ساز و کار­­های زیستی استفاده شد. ارزیابی پویش کل ژنوم با بسته نرم افزاری GHap بر پایه مدل هاپلوتیپی در برنامه R انجام شد. تجزیه غنی­سازی مجموعه­های ژنی با بسته نرم­افزاری goseq برنامه R با هدف شناسایی طبقات عملکردی و مسیرهای زیستی ژن­های نزدیک در مناطق ژنومی کاندیدا انجام شد و در نهایت برای تجزیه و تحلیل بیوانفورماتیکی از پایگاه­های GO، KEGG، DAVID و PANTHER استفاده شد. با تجزیه و تحلیل غنی­سازی مجموعه­های ژنی، مسیرهای هستی­شناسی )ژن­های کاندیدا( Estrogen metabolic process (HSD17B12)، Synapse organization (KIRREL3 و PPFIA2)، Sensory perception of mechanical stimulus (MYO3A و KCNMA1)، Protein tyrosine kinase activity (IGF1R)، cell-cell junction (FRMD4A)، GnRH signaling pathway (ADCY5) و Focal adhesion (PPP1R12A) شناسایی شدند. ژن­های کاندیدا نقش مهمی در باروری، سن اولین گوساله­زایی، بیوسنتز استروژن، نرخ آبستنی تلیسه­ها، رشد ابتدایی جنین، سن بلوغ و تنظیم هموستازی گلوکز در تخمدان داشتند. با توجه به تأیید مناطق قبلی پویش ژنومی و شناسایی مناطق ژنومی جدید، استفاده از یافته­های این پژوهش می­تواند در انتخاب ژنتیکی گاو مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genome-wide association study based on haplotype model and gene-set enrichment analysis associated with age at first calving in Nelore cattle

نویسندگان [English]

  • H. Mohammadi 1
  • A. H. Khaltabadi Farahani 2
  • M. H. Moradi 2
1 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
2 Associate Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
چکیده [English]

Introduction: Zebu cattle are highly adapted to tropical regions. However, females reach puberty after taurine heifers, which affects the economic efficiency of beef cattle breeding in tropical regions. A method to identify new loci and confirm existing quantitative trait loci (QTL) is through genome-wide association studies (GWAS). QTL-assisted selection and genomic regions affecting the production and reproduction traits have been considered to increase the efficiency of selection and improve production performance. The GWAS typically focuses on genetic markers with the strongest evidence of association. However, single markers often explain only a small component of the genetic variance and hence offer a limited understanding of the trait under study. A solution to tackle the aforementioned problems, and deepen the understanding of the genetic background of complex traits, is to move up the analysis from the single nucleotide polymorphism (SNP) to the gene and gene-set levels. In a gene-set analysis, a group of related genes that harbor significant SNP previously identified in GWAS is tested for over-representation in a specific pathway. The present study aimed to conduct a GWAS based on a gene-set enrichment analysis for identifying the loci associated with age at first calving trait using the high-density SNPs.
Materials and methods: A total of 2273 Nelore cattle (995 males and 1278 females) genotyped using the Illumina BovineHD BeadChip were used in the current study. The association analysis included females with valid first calving records as well as open heifers. The association analyses were carried out by considering deregressed estimated breeding values (dEBV) for age at first calving as response variables. Before deregression, the estimated breeding values (EBV) were obtained for the dataset by considering both the calved and non-calved heifers. Variance components and EBV were obtained using the DMU software. In the analysis of AFC, a single-trait animal model was run. The gene-set analysis consists of three different steps: the assignment of SNPs to genes, the assignment of genes to functional categories, and finally the association analysis between each functional category and the phenotype of interest. The GWAS was evaluated using the GHap package in the R program. Using the biomaRt2 R package, the SNPs were assigned to genes if they were within the genomic sequence of the gene or within a flanking region of 15 kb up- and downstream of the gene. For the assignment of the genes to functional categories, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases were used. The GO database designates biological descriptors to genes based on attributes of their encoded products and it is further partitioned into three components: biological process, molecular function, and cellular component. The KEGG pathway database contains metabolic and regulatory pathways, representing the actual knowledge of molecular interactions and reaction networks. Finally, a Fisher’s exact test was performed to test for overrepresentation of the significant genes for each gene-set.
Results and discussion: The block sizes of five SNPs were chosen to perform association studies. Gene-set enrichment analysis has proven to be a great complement to GWAS. Among available gene-set databases, GO is probably the most popular, whereas KEGG is a relatively new tool that is gaining ground in livestock genomics. We hypothesized that the use of gene set information could improve prediction. However, neither of the gene set SNP classes outperformed the standard whole-genome approach. Gene-sets have been primarily developed using data from model organisms, such as mice and flies; therefore, some of the genes included in these terms may be irrelevant for reproduction. Gene-set enrichment analysis identified candidate genes related to estrogen metabolic process (HSD17B12), synapse organization (PPFIA2 and PPFIA2), sensory perception of mechanical stimulus (MYO3A and KCNMA1), protein tyrosine kinase activity (IGF1R), the cell-cell junction (FRMD4A), GnRH signaling pathway (ADCY5), and focal adhesion (PPP1R12A). Some of the genes which were found are consistent with some previous studies and are involved in biological pathways related to fertilization, age at first calving, estrogen biosynthesis, heifer conception rate, early development of the fetus, puberty, and glucose homeostasis in the ovary.  
Conclusions: This study supported previous results from GWAS of reproductive traits, and also revealed additional regions in the cattle genome associated with these economically important traits. These findings could potentially be useful for genetic selection in cows.

کلیدواژه‌ها [English]

  • Gene-set enrichment analysis
  • Reproduction
  • Cattle
  • Biological pathways
  • Haplotype
Boligon A. A. and Albuquerque L. G. 2011. Genetic parameters and relationships of heifer pregnancy and age at first calving with weight gain, yearling and mature weight in Nelore cattle. Livestock Science, 141(1): 12-16.
Cai Z., Guldbrandtsen B., Lund M. S. and Sahana G. 2019. Prioritizing candidate genes for fertility in dairy cows using gene-based analysis, functional annotation and differential gene expression. BMC Genomics, 20(1): 255.
Cochran S. D., Cole J. B., Null D. J. and Hansen P. J. 2013. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genetics, 7(14): 49.
Durinck S., Spellman P. T., Birney E. and Huber W. 2009. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nature Protocols, 4: 1184-1191.
Fernández J. C., Pérez J. E., Herrera N., Martínez R., Bejarano D. and Rocha J. F. 2019. Genomic association study for age at first calving and calving interval in Romosinuano and Costeño con Cuernos cattle. Genetics and Molecular Research, 18­(2): 1-13.
Garrick D. J., Taylor J. F. and Fernando R. L. 2009. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genetics Selection Evolution, 41(1):1.
Han Y. and Peñagaricano F. 2016. Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genetics, 17: 143.
Hare H. D., Norman J. R. and Wright A. 2006. Trends in calving ages and calving intervals for dairy cattle breed in the United States. Journal of Dairy Science, 89: 365-370.
Honarvar M., Sadeghi M., Moradi-Shahrebabak H., Behzadi S. H., Mohammadi H. and Lavaf A. 2012. Study of Polymorphisms in the 5´ flanking region of the Ovine IGF-I gene in Zel sheep. World Applied Sciences Journal, 16(5): 726-728.
Hinrichs A. L., Larkin E. K. and Suarez B. K. 2009. Population stratification and patterns of linkage disequilibrium. Genetic Epidemiology, 33: 88-92.
Khaltabadi Farahani A. H., Mohammadi H., Moradi M. H., Ghasemi H. A. and Hajkhodadadi I. 2020. Gene set enrichment analysis using genome-wide association study to identify genes and pathways associated with litter size in various sheep breeds. Animal Production Research, 9(3): 47-57. (In Persian).
Li J., Liu J., Campanile G., Plastow G., Zhang C., Wang Z., Cassandro M., Gasparrini B., Salzano A., Hua G., Liang A. and Yang L. 2018. Novel insights into the genetic basis of buffalo reproductive performance. BMC Genomics, 19(1): 814.
Marques D. B. D., Bastiaansen J. W. M., Broekhuijse M. L. W. J., Lopes M. S., Knol E. F., Harlizius B., Guimarães S. E. F., Silva F. F. and Lopes P. S. 2018. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genetics Selection Evolution, 50(1): 40.
Magnabosco C. U, Lopes F. B., Magalhaes Rosa G. J. and Sainz R. D. 2016. Bayesian estimates of genetic parameters for reproductive traits in Nellore cows raised on pasture in tropical regions. Revista Colombiana de Ciencias Pecuarias, 29­(2): 119-129.
Mohammadi A., Alijani S., Rafat S. A. and Abdollahi-Arpanahi R. 2020. Genome-wide association study and pathway analysis for female fertility traits in Iranian Holstein cattle. Annals of Animal Science, 20(3): 825-851.
Mota R. R., Guimarães S. E. F., Fortes M. R. S., Hayes B., Silva F. F. and Verardo L.L. 2017. Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. Journal of Animal Breeding and Genetics, 134(6): 484-492.
Mota L. F. M., Lopes F. B., Fernandes G. A., Rosa G. J. M., Magalhães A. F. B., Carvalheiro R. and Albuquerque L. G. 2020. Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers. Scientific Reports, 10(1): 6481.
Nascimento A. V. D., Romero A. Ã. R. D. S., Utsunomiya Y. T., Utsunomiya A. T. H., Cardoso D. F. and Neves H. H. R. 2018. Genome-wide association study using haplotype alleles for the evaluation of reproductive traits in Nelore cattle. PLoS ONE, 13­(8): e0201876.
Ortega M. S., Denicol A. C., Cole J. B., Null D. J. and Hansen P. J. 2016. Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows. Animal Genetics, 47(3): 288-297.
Peñagaricano F., Weigel K. A., Rosa G. J. and Khatib H. 2013. Inferring quantitative trait pathways associated with bull fertility from a genome-wide association study. Frontiers in Genetics, 3: 307-314. 
Raza S. H. A., Khan R., Gui L., Schreurs N. M., Wang X., Mei C., Yang X., Gong C. and Zan L. 2020. Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in Qinchuan beef cattle. Bioscience Reports, 40(3): BSR20192113.
Sharma A., Lee J. S., Dang C. G., Sudrajad P., Kim H. C., Yeon S. H., Kang H. S. and Lee S. H. 2015. Stories and Challenges of Genome Wide Association Studies in Livestock-A Review. Asian-Australasian Journal of Animal Science, 28(10): 1371-1379.
Scheet P. and Stephens M. 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics, 78(4): 629-644.
Sigdel A., Liu L., Abdollahi-Arpanahi R., Aguilar I. and Peñagaricano F. 2020. Genetic dissection of reproductive performance of dairy cows under heat stress. Animal Genetics, 51(4): 511-520.
Utsunomiya Y. T., Milanesi M., Utsunomiya A. T., Ajmone-Marsan P. and Garcia J. F. 2016. GHap: An R package for Genome-wide Haplotyping. Bioinformatics, 32(18): 2861-2862.
Young M. D., Wakefield M. J., Smyth G. K. and Oshlack A. 2010. Method gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11: 14-23.