پیش بینی وزن بدن گاوهای سیستانی با استفاده از بینایی رایانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قم، سازمان تحقیقات، آموزش و ترویج کشاورزی، قم، ایران

2 استادیار، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 دانشیار، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

4 استادیار، بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی سیستان و بلوچستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زاهدان، ایران

5 استادیار، بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان یزد، سازمان تحقیقات ،آموزش و ترویج کشاورزی، یزد، ایران

چکیده

از آنجا که استفاده از روش‌های جایگزین، از جمله روش‌های مبتنی بر استفاده از هوش مصنوعی، می‌توانند فرآیند وزن­کشی دام­ها را تسهیل کند، مطالعه حاضر با هدف پیش­بینی وزن گاوهای سیستانی با استفاده از فناوری بینایی ‌رایانه‌ای انجام شد. بدین منظور، گاوهای سیستانی موجود در ایستگاه زهک برای یک دوره یک‌ساله وزن‌کشی شده و به­طور هم‌زمان از نمای جانبی هر دام، تصاویر دیجیتال تهیه شد. تصاویر دیجیتال ابتدا با استفاده از نرم‌افزار Matlab مورد پیش­پردازش قرار گرفت و سپس برخی خصوصیات شکل­شناسی از هر یک از آنها استخراج شد. برای پیش­بینی وزن گاوها، خصوصیات استخراج شده از تصاویر به عنوان ورودی و وزن هر دام به عنوان خروجی جهت آموزش به شبکه عصبی مصنوعی معرفی شد. مدلی که دارای بالاترین دقت و کمترین خطا بود به عنوان مدل نهایی جهت پیش­بینی وزن دام­ها انتخاب شد. بر اساس نتایج، قطر معادل، طول محور اصلی، طول محور فرعی، جعبه محاطی، مساحت قسمت محدب، مساحت ناحیه پر شده، محیط تصویر، مساحت تصویر و تعداد نقاط سفید تصویر دارای همبستگی بالاتری با وزن گاوهای سیستانی بود (01/0P<). مدل شبکه عصبی مصنوعی توانست با دقت 4/97 درصد، وزن گاوهای سیستانی را از روی خصوصیات تصاویر دیجیتال آن‌ها پیش­بینی کند. نتایج مطالعه حاضر نشان داد، فناوری بینایی ‌رایانه­ای، قابلیت مناسبی برای پیش­بینی وزن گاوهای سیستانی داشته و می­تواند جایگزین روش‌های متداول کنونی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of body weight of Sistani cows using computer vision

نویسندگان [English]

  • M. Khojastehkey 1
  • A. Sadeghipanah 2
  • N. Asadzadeh 2
  • A. Aghashahi 3
  • M. Keikhah Saber 4
  • M. Bitaraf Sani 5
  • S. Esmaeilkhanian 3
1 Assistant Professor, Animal Science Research Department, Qom Agriculture and Natural Resources Research and Education Center, AREEO, Qom, Iran
2 Assistant Professor, Animal Science Research Institute of Iran, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
3 Associate Professor, Animal Science Research Institute of Iran, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
4 Assistant Professor, Animal Science Research Department, Sistan and Baluchestan Agriculture and Natural Resources Research and Education Center, AREEO, Zahedan, Iran
5 Assistant Professor, Animal Science Research Department, Yazd Agriculture and Natural Resources Research and Education Center, AREEO, Yazd, Iran
چکیده [English]

Introduction: Sistani cows are generally restless animals; therefore, controlling, treating, and weighing them is difficult. On the other hand, recording the weight of domestic animals, including Sistani cows, is inevitable, because it provides a good scale for management decisions in the herd such as balancing the diet, changing environmental conditions, or determining the time of slaughter of fattening animals. In addition to scales, various methods are commonly used to measure the body weight of large animals. Some of these methods include the use of weight-meters, appraisal assessments, and the use of mathematical models. One of the new methods for predicting livestock weight is artificial intelligence. Because some reports are indicating that artificial intelligence could facilitate the weighing process of animals, this study was performed to predict the body weight of Sistani cows using computer vision technology.
Materials and methods: The data required for this study were recorded in the Zahak breeding station located in Sistan and Baluchestan province of Iran. The recording operation involved the weighing and biometric measurement of about 190 Sistani cattle, including calves, heifers, and male and female animals, every three months during a year. At the time of weighing, images of the lateral view of each animal were taken and recorded using the CANON SX150IS digital camera. During this period, a total of 358 weight records of Sistani cows at different ages were recorded. The digital images were initially preprocessed using MATLAB software, and then some morphological features were extracted from each image. For predicting the weight of Sistani cows via the Artificial Neural Network (ANN), the extracted features of images were introduced to the ANN model as input and the weight of cows as output. The "feed-forward neural network", which was trained by the "error propagation" algorithm, was used to predict the weight of cows. The function used in the hidden layer of the ANN model was sigmoidal and in the output layer was linear. An ANN model which had the highest precision and lowest error was selected as the final model for predicting the animal weights. The criteria for selecting the best model were the highest determination coefficient (R2) and the lowest mean square error (MSE) compared to other available models.
Results and discussion: Out of 22 features extracted from each image, only 15 of them, which had a higher correlation with the body weight of cows at different ages, were selected as effective features. As result, equivalent diameter, major axis length, minor axis length, bounding box, convex area, filled area, area, perimeter, and the number of non-zero pixels of the image (NNZ) had the highest correlation with the cattle weights (P<0.01) and used as effective features to train the ANN model. The final ANN model had 15 neurons in the input layer including selected image features, 11 neurons in the hidden layer, and one neuron in the output layer including the weight of the cows. The precisions of the artificial neural network in the training, validation, and test phase were 0.974, 0.970, and 0.981, respectively. The results showed that the final ANN model had acceptable precision in all light, medium, and heavy-weight cows, and the size and the age of animals did not have a significant effect on the precision of the artificial neural network model. A correlation between the actual weight of Sistani cows and the weights predicted by the ANN model was 98.3%. The average error of the model in predicting the weight of cows was 1.11%. In the practical test, a 2.32 kg deviation was observed between the predictions of the ANN model and actual weights in Sistani cows. The accuracy of the ANN model for predicting the weight of Sistani cows in the present study is acceptable and within the range of the other reports.
Conclusions: The proposed method based on image processing and ANN, had acceptable results in predicting the weight of Sistani cows. Given the difficulties of weighing Sistani cows as heavy livestock and sometimes the time-consuming process, it seems that the use of new technologies such as computer vision methods can be a good alternative to conventional weighing methods and facilitate and reduce recording costs of Sistani cows.

کلیدواژه‌ها [English]

  • Computer vision
  • Weight prediction
  • Sistani cattle
  • Artificial intelligence
Abegaz S. and Awgichew K. 2009. Technical bulletin no. 23. Estimation of weight and age of sheep and goat. Ethiopia sheep and goat productivity improvement program. ESGPIP=.Ethiopia
Atta M. and el-Khidir O. A. 2004. Use of heart girth, withers height and scapuloischial length for prediction of love weight of Nilotic sheep. Small Ruminant Research, 55: 233-237.
Bazi H., Rashki M., Naghz Ali A. and Keikhasalar A. 2006. An introduction to the identification and status of Sistani cattle in the Sistan region - Extension Magazine - Registration Number: 1238/85. Sistan Agricultural and Natural Resources Research Center. (In Persian).
Cannas A. and Boe F. 2003. Prediction of the relationship between body weight and body condition score in sheep. Italian Journal of Animal Science, 2: 527-529.
De Villers J. F., Gcumisa S. T. and Gumede S. A. 2010. Weight band to estimate the live weight of meat goats. Agri update: information from the KZN department of Agriculture environmental affairs and rural development, south Africa.
Gomes R. A., Monterio G. R., Assis G. J., Busato K. C., Ladeira M. M. and Chizzotti M. L. 2016. Technical note. Estimating body weight and body composition of beef cattle through digital Image analysis. Journal of Animal Science, 94: 5414-5422.
Hao M. Yu H. and Li D. 2016. The measurement of fish size by machine vision-A review. IFIP International Federation for Information Processing. IFIP AICT, 479: 15-32.
Khojastehkey M., Abbasi M. A., Akbari Sharif A. and Hassani A. M. 2016a. Estimating the weight of newborn lambs using digital image processing. Research and Construction, 29(112): 99-104. (In Persian).
Khojastehkey M. Aslaminejad A. A., Shariati M. M. and Dianat R. 2016b. Body size estimation of new born lambs using image processing and its effect on the genetic gain of a simulated population. Journal of Applied Animal Research, 44(1): 326-330.
Li Z., Luo Ch., Teng G. and Lin T. 2015. Estimation of pig weight by machine vision. A review. 7th International Conference on Computer and Computing Technology in Agriculture. Beijing, China. Pp. 42-49.
Mahmoud M. A., Shaba P. and Zubairu U. V. 2014. Live body weight estimation in small ruminant: areview. Global Journal of Animal Scientific Research, 2: 102-108.
Matlab. 2018. The Math Works, Inc., Natick, Massachusetts, United States.
Mirzaei H. R. 1995. Determining the growth and fattening potential of male Sistani calves in station and village conditions in Sistan, MSc Thesis, Tarbiat Modares University, Tehran, Iran. (In Persian).
Negretti P., Bianconi G., Bartocci S. and Terramoccia S. 2007. Lateral trunk surface as a new parameter to estimate live body weight by visual image analysis. Italian Journal of Animal Science, 6: 1223-1225.
Negretti P., Bianconi G., Bartocci S., Terramoccia S. and Verna M. 2008a. Determination of live weight and body condition score in lactating Mediterranean buffalo by visual image analysis. Livestock Science, 113: 1-7.
Negretti P., Bianconi G., Bartocci S., Terramoccia S. and Noè L. 2008b. New morphological and weight measurements by visual image analysis in sheep and goats. New trends for innovation in the Mediterranean animal production, 6-8 November, Corte, France.
Otoikhian C. S. O., Otoikhian A. M., Akporhuarho O. P. and Isidahoman C. 2008. Correlation of body weight and some body measurement parameters in Quda sheep under extensive management system. African Journal of General Agriculture, 4: 129-133.
Sargolzehi A. 1998. Economic study of fattening the Sistani cattle in two traditional and industrial methods- MSc Thesis, Faculty of Economics, Allameh Tabatabaei University, Tehran, Iran. (In Persian).
Seo K. W., Kim H. T., Lee D. W. and Yoon Y. C. 2011. Image processing algorithms for weight estimation of dairy cattle. Journal of Bio System Engineering, 36: 48-57.
SPSS. 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.
Stajnko D., Vindiš P., Janžekovič M. and Brus M. 2010. Non invasive estimating of cattle live weight using thermal imaging. New trends in technologies: Control, management, computational intelligence and network systems. Meng Joo Er (Editor), Books on Demand publication.
Tasdemir S., Urkmez A. and Inal S. 2011. A fuzzy rule-based system for predicting the live weight of Holstein cows whose body dimensions were determined by image analysis. Turkish Journal of Electronic Engineering and Computer Science, 19: 689-703.
Wang Y., Yang W., Winter P. and Walker L. 2008. Walk-through weighing of pigs using machine vision and an artificial neural network. Biosystems Engineering, 100: 117-125.
Wangchuk K., Wangdi J. and Mindu M. 2017.Comparison and reliability of techniques to estimate live cattle body weight. Journal of Applied Animal Research, 46: 349-352.
Yudkowsky E. 2008. Artificial Intelligence as a Positive and Negative Factor in Global Risk, edited by Nick Bostrom and Milan M. Ćirković, 308-345. New York: Oxford University Press.