مطالعه ساختار ژنتیکی جمعیت گوسفند شین بش با استفاده از نشانگرهای مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

2 استادیار، گروه علوم دامی، واحد مهاباد، دانشگاه آزاد اسلامی

چکیده

در این تحقیق جهت مطالعه ساختار ژنتیکی جمعیت گوسفند شین بش، تعداد 75 نمونه خون از محل پراکنش این حیوانات جمع­آوری شد. استخراج DNA با روش بهینه یافته Salting-Out انجام گرفت. تعداد 10 جایگاه ریزماهواره و یک ناحیه کنترلی D-Loop مربوط به DNA میتوکندریایی (mtDNA) مورد مطالعه قرار گرفت. برای تکثیر جایگاه­های ریزماهواره از یک PCR چندگانه استفاده شد. آغازگرهای انتخابی نشان­دار شده و  با استفاده از دستگاه Genetic Analyser تعیین ژنوتیپ افراد انجام گرفت. در مجموع، 84 آلل در جمعیت مورد مطالعه شناسایی شد، لذا متوسط تعداد آلل به ازای هر نشانگر برابر با 4/8 بود. میانگین هتروزیگوسیتی مورد انتظار و هتروزیگوسیتی مشاهده شده در این جمعیت به ترتیب برابر با 042/0±724/0 و 058/0±80/0 بود. مقدار FIS در این جمعیت برابر با  108/0-  بود که نشان­دهنده غیرهمخون بودن و وجود تنوع قابل توجه در این جمعیت است. نتایج حاصل از ناحیه کنترلی mtDNA نشان داد که میزان تنوع هاپلوتیپی و درصد جایگاه­های چندشکل در این جمعیت به ترتیب 039/0±938/0 و 59/4 است. از مجموع 24 نمونه تعیین توالی شده در ناحیه کنترلی mtDNA، تعداد 17 هاپلوتیپ در جمعیت مورد مطالعه مشخص شد. میزان تنوع نوکلئوتیدی در جمعیت شین بش، 0013/0±0131/0 به ازای هر جایگاه به­دست آمد. نتایج این تحقیق نشان داد که 50 درصد از افراد جمعیت شین بش دارای هاپلوگروه A، 2/29 درصد افراد دارای هاپلوگروه B و 8/20 درصد افراد دارای هاپلوگروه C هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the genetic structure of the Shin Bash sheep population by molecular markers

نویسندگان [English]

  • A. Javanrouh 1
  • S. Khodamoradi 2
1 Assistant Professor, Animal Science Research Institute of Iran, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Assistant professor, Animal Science Department, Mahabad Branch, Islamic Azad University, Mahabad, Iran
چکیده [English]

Introduction: West Azerbaijan province is the second most populous sheep province in Iran. In this province, different breeds of sheep such as Makui, Herki, Ghezel, Afshar, and Shin Bash are bred. Shin Bash sheep are bred in the south of West Azerbaijan province, especially in the cities of Mahabad and Piranshahr, and its population is about 200,000. Nowadays, the management of genetic resources and the study of the risk of genetic diversity of populations has become very important. The need to preserve the genetic resources of native livestock and use these genetic resources in the future determines the genetic structure of populations, and the study of the genetic diversity within each population can help manage genetic resources and provide good information for breeding programs. With the development of molecular techniques and the use of molecular markers as a tool to assess genetic diversity, useful information has been provided at various levels such as population structure, gene flow rate, phylogenetic relationships, and genealogy tests. Identification of livestock using various molecular techniques is highly accurate and the results of studies can be used in breeding and management programs. The purpose of this study was to study the genetic structure of Shin Bash sheep using microsatellite markers on the nuclear genome and SNP markers on mitochondrial DNA (mtDNA) and to introduce a lesser-known population.
Materials and methods: To study the genetic structure of the Shin Bash sheep population, 75 blood samples were collected from their geographic regions. Genomic DNA was extracted by using a modified Salting-Out method. Ten microsatellite markers and a control region (CR) of D-Loop belonging to mitochondrial DNA (mtDNA) were studied. Microsatellite loci were amplified in a multiplex PCR. Selected primers were labeled and genotyping was conducted using the Genetic Analyzer system. To analyze the data obtained from microsatellite markers, population parameters include: the Hardy-Weinberg equilibrium test, number of alleles per site, number of effective alleles, observed and expected heterozygosity, Shannon index, and F-statistic were calculated using POPGENE software version 3.1 and GENALEX version 6.5. In this research, Chromas ver. 2.33 (http://www.technelysium.com.au/chromas.html) was used to sort the sequencing data. Thus, the nucleotide sequence of each individual in this software was called and saved after sorting in the FASTA format. Also, to ensure the correct reading of the nucleotides, all sequences were examined using Blast online software at the NCBI site, indicating that this sequence is related to sheep mtDNA. To analyze the data obtained from sequencing in the control region of sheep mtDNA, MEGA version 7.0 and DnaSP version 6.12 were used.
 Results and discussion:  A Total of 84 alleles were identified; thus, the mean number of alleles per locus was 8.4. A total of 10 microsatellite loci were studied, seven were at Hardy-Weinberg equilibrium and three had significant deviations from Hardy-Weinberg equilibrium. Hardy-Weinberg disequilibrium can be caused by an increase in homozygotes vs. heterozygotes or, conversely, a high mutation rate, the formation of new alleles, and the presence of null alleles. The mean expected heterozygosity and observed heterozygosity in this population were 0.724 ± 0.042 and 0.80 ± 0.058, respectively. The FIS value for this population was -0.108 which showed low inbreeding and considerable diversity in the studied population. The results of the control region (CR) of mtDNA showed that haplotype diversity and percentage of the polymorphic site were 0.938 ± 0.039 and 4.59, respectively. A total of 24 sequenced individuals of the control region (CR) of mtDNA and 17 haplotypes were identified in the studied population. The amount of nucleotide diversity in the Shin Bash population was 0.0131 ±0.0013 per site. The results of this study showed that 50% of the Shin Bash population has haplogroup A, 29.2% haplogroup B, and 20.8% haplogroup C.
Conclusions: The results of this study, using microsatellite markers, showed that the population of Shin Bash sheep has significant genetic diversity. The negative FIS index indicates the observed heterozygosity superiority over the expected heterozygosity and thus indicates non-inbreeding and the existence of acceptable diversity within the Shin Bash sheep population. The results of mtDNA control region sequencing also showed the presence of haplotypic diversity and higher nucleotide diversity in the Shin Bash sheep population. On the other hand, the results of determining haplotype groups showed that this population has all three types of haplotype groups A, B, and C.

کلیدواژه‌ها [English]

  • Genetic characterizations
  • Shin Bash sheep
  • Microsatellite marker
  • Mitochondrial DNA (mtDNA)
Al-Atiyat R. M., Aljumaah R. S., Alshaikh M. A. and Abudabos A. M. 2018. Microsatellite-based genetic structure and diversity of local Arabian sheep breeds. Frontiers in Genetics, 9: 408.
Angelo F. D., Albenzio M., Sevi A., Ciampolini R., Cecchi F., Ciani E. and Muscio A. 2009. Genetic variability of the Gentile di Puglia sheep breed based on microsatellite polymorphism. Journal of Animal Science, 87(4): 1205-1209.
Barker J. S. F. 2001. Conservation and management of genetic diversity: a domestic animal perspective. Canadian Journal of Forest Research, 31: 588-595.
Beuzen N. D., Stear M. J. and Chang K. C. 2000. Molecular markers and their use in animal breeding. The Veterinary Journal, 60(1): 42-52.
Boratyn G. M., Schäffer A. A., Agarwala R., Altschul S. F., Lipman D. J. and Madden T. L. 2012. Domain enhanced lookup time accelerated BLAST. Biology Direct, 17(7): 12.
Chen S. Y., Duan Z. Y., Sha T., Xiangyu J., Wu S. F. and Zhang Y. P. 2006. Origin, genetic diversity, and population structure of Chinese domestic sheep. Gene, 376: 216-223.
Dudu A., Popa G. O., Ghiță E., Pelmuș R., Lazăr C., Costache M. and Georgescu S. E. 2020. Assessment of genetic diversity in main local sheep breeds from Romania using microsatellite markers. Archives Animal Breeding, 63(1): 53-59.
El Nahas S., Hassan A., Abou Mossallam A., Mahfouz E., Bibars M., Oraby H. and Hondt H. A. 2008. Analysis of genetic variation in different sheep breeds using microsatellites. African Journal of Biotechnology, 7(8): 1060-1068.
FAO. 2007. The State of the world’s animal genetic resources for Food and Agriculture- in brief. Edited by Pilling D. and Rischkowsky B. Rome, Italy.
FAO. 2011. Guideline on molecular genetic characterization of animal genetic resources. Food and Agriculture Organization. Rome, Italy.
Ferreira J. S., Paiva S. R., Silva E. C., McManus C. M., Caetano A. R., Façanha D. A. and de Sousa M. A. 2014. Genetic diversity and population structure of different varieties of Morada Nova hair sheep from Brazil. Genetics and Molecular Research, 13(2): 2480-2490.
Groeneveld L. F. Lenstra J. A. Eding H. Toro M. A. Scherf  B., Pilling D., Negrini R., Finlay E. K., Jianlin H., Groeneveld E. and Weigend S. 2010. Genetic diversity in farm animals-a review. Animal Genetics, 41(1): 6-31.
Hall T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95-98.
Hedrick P. W. 2000. Genetics of populations. 2nd Edition, Jones and Bartlett Publishers, Sudbury, MA.
Javanrouh A. 2013. Determination of genetic relationships of Shin Bash sheep population with Ghezel, Harki, Shal and Zandi breeds using mtDNA and microsatellite markers. The final report of the research project, Agricultural Research, Education and Extension Organization, Karaj, Iran. (In Persian).
Kumar S., Stecher G. and Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874.
Ladoukakis E. D. and Zouros E. 2017. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. Journal of Biological Research-Thessalonike, 24: 2.
Liu J., Ding X., Zeng Y., Yue Y., Guo X., Guo T., Chu M., Wang F., Han J., Feng R., Sun X., Niu C., Yang B., Guo J. and Yuan C. 2016. Genetic diversity and phylogenetic evolution of Tibetan sheep based on mtDNA D-Loop sequences. PloS One, 11(7): e0159308.
Lv F. H., Peng W. F., Yang J., Zhao Y. X., Li W. R., Liu M. J., Ma Y. H., Zhao Q. J., Yang G. L., Wang F., Li J. Q., Liu Y. G., Shen Z. Q., Zhao S. G., Hehua E., Gorkhali N., Vahidi F., Muladno M., Naqvi A. N., Tabell J., Iso-Touru T., Bruford M. W., Kantanen J., Han J.L. and Li M. H. 2015. Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep. Molecular Biology and Evolution, 32: 2515-2533.
Machová K., Málková A. and Vostrý L. 2022. Sheep post-domestication expansion in the context of mitochondrial and Y chromosome haplogroups and haplotypes. Genes, 13(4): 613.
Molaei V., Asfouri R., Eskandari Nasab M. P., Ghanbari P. and Nikmard M. 2010.  Microsatellite diversity in six Iranian sheep breeds. Iranian Journal of Animal Science Research, 2(2): 178-183. (In Persian).
Mukhametzharova I., Islamov Y., Shauyenov S., Ibrayev D., Atavliyeva S. and Tarlykov P. 2018. Genetic characterization of Kazakh native sheep breeds using mitochondrial DNA. Online Journal of Biological Sciences, 18(3): 341-348.
Mustafa S. I., Schwarzacher T. and Heslop-Harrison J. S.  2018. Complete mitogenomes from Kurdistani sheep: abundant centromeric nuclear copies representing diverse ancestors. Mitochondrial DNA Part A, 29(8): 1180-1193.
Oner Y., Calvo J. H. and Elmaci C. 2013. Investigation of the genetic diversity among native Turkish sheep breeds using mtDNA polymorphisms. Tropical Animal Health and Production, 45(4): 947-951.
Peakall R. and Smouse P. E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537-2539.
Pedrosa S., Arranz J. J., Brito N., Renseigné N., Primitivo F. S. and  Bayon Y. 2007. Mitochondrial diversity and the origin of Iberian sheep. Genetics Selection Evolution, 39(1): 91-103.
Pedrosa S., Uzun M., Arranz J. J., Gutiérrez-Gil B., San Primitivo F. and Bayón Y. 2005. Evidence of three maternal lineages in Near Eastern sheep supporting multiple domestication events. Proceedings of the Royal Society B: Biological Sciences, 272(1577): 2211-2217.
Rafia P. and Tarang A. 2016. Sequence variations of mitochondrial DNA displacement-loop in Iranian indigenous sheep breeds. Iranian Journal of Applied Animal Science, 6(2): 363-368.
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E. and Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data Sets. Molecular Biology and Evolution, 34(12): 3299-3302.
Schroeder O., Benecke N., Frölich K., Peng Z., Kaniuth K., Sverchkov L., Reinhold S., Belinskiy A. and Ludwig A. 2017. Endogenous retroviral insertions indicate a secondary introduction of domestic sheep lineages to the Caucasus and Central Asia between the bronze and iron age. Genes, 8(6): 165.
Sharma R., Ahlawat S., Sharma H., Sharma P., Panchal P., Arora R. and Tantia M. S. 2020. Microsatellite and mitochondrial DNA analyses unveil the genetic structure of native sheep breeds from three major agro-ecological regions of India. Scientific Reports, 10(1): 20422.
Tapio M., Marzanov N., Ozerov M., Cinkulov M., Gonzarenko G., Kiselyova T., Murawski M., Viinalass H. and Kantanen J. 2006. Sheep mitochondrial DNA variation in European, Caucasian, and Central Asian areas. Molecular Biology and Evolution, 23: 1776-1783.
Tarlykov P.,  Atavliyeva S., Auganova D., Akhmetollayev I., Loshakova T., Varfolomeev V. and Ramankulov Y. 2021. Mitochondrial DNA analysis of ancient sheep from Kazakhstan: evidence for early sheep introduction. Heliyon, 7(9): e08011.
Yeh F. C., Yang R. and Boyle T. 1999. POPGENE. Version 1.31. Microsoft Window–based Freeware for Population Genetic Analysis. University of Alberta, Edmonton, AB, Canada.