مطالعه پویش کل ژنوم بر پایه غنی سازی مجموعه های ژنی صفات مهم اقتصادی در بلدرچین ژاپنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک

چکیده

در این پژوهش، به منظور شناسایی ژن­ها و مسیرهای مرتبط با برخی صفات اقتصادی، مطالعه پویش کل ژنوم بر مبنای تجزیه غنی­سازی مجموعه­های ژنی با استفاده از یک تراشه چندشکلی تک نوکلئوتیدی (SNP) ژنوم بلدرچین ژاپنی (­illumina iSelect 4K) در یک جمعیت F2 حاصل از تلاقی دوطرفه انجام شد. به ازای هر پرنده، صفات میزان خوراک مصرفی، افزایش وزن بدن، ضریب تبدیل خوراک، خاکستر استخوان درشت­نی و پا اندازه­گیری شد. با استفاده از نرم­افزار GCTA و بر اساس مدل خطی مختلط ارتباط هر یک از SNP­ها با هر یک از صفات بررسی شد. تجزیه غنی­سازی مجموعه­های ژنی با بسته نرم­افزاری goseq برنامه R با هدف شناسایی طبقات عملکردی و مسیرهای زیستی ژن­های نزدیک در مناطق ژنومی کاندیدا انجام شد و در نهایت برای تجزیه بیوانفورماتیکی از پایگاه­های برخط DAVID و PANTHER استفاده شد. در این پژوهش، تعداد 11 نشانگر SNP واقع روی کروموزوم­های 2، 3، 4، 5، 10، 18، 20، 24 و 27 شناسایی شدند که با ژن­های NPY، DRD2، PTPRN2، BMPR1B، MYF5، IGF2BP1، MYO1E، FGF2، LDB2، BMP4، ACOX1، PCK1، PLCB4، PLCB1 و PLCG1 مرتبط بودند. در تجزیه غنی­سازی مجموعه ژنی، تعداد 23 طبقات هستی­شناسی و مسیرهای بیوشیمیایی KEGG با صفات مورد بررسی شناسایی شد (05/0>P). از این بین، طبقات هستی­شناسی Protein glycosylation، Myoblast differentiation،Positive regulation of muscle cell differentiation ، مسیرهای بیوشیمیایی MAPK signaling pathway و Calcium signaling pathway نقش مهمی در توسعه الیاف عضلانی اسکلتی، مصرف خوراک و قابلیت جذب داشتند. با توجه به تأیید مناطق قبلی پویش ژنومی و شناسایی مناطق ژنومی جدید، استفاده از یافته­های این پژوهش می­تواند در انتخاب ژنتیکی با هدف بهبود تولید، مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genome-wide association study based on gene-set enrichment analysis of economically important traits in Japanese quail

نویسندگان [English]

  • H. Mohammadi 1
  • A. H. Khaltabadi Farahani 2
  • M. H. Moradi 2
1 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
2 Associate Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
چکیده [English]

Introduction: Identifying genes with large effects on economically important traits, has been one of the important goals in sheep breeding. A method to identify new loci and confirm existing quantitative trait loci (QTL) is through genome-wide association studies (GWAS). QTL-assisted selection and genomic regions affecting the production traits have been considered to increase the efficiency of selection and improve production performance. GWAS typically focuses on genetic markers with the strongest evidence of association. However, single markers often explain only a small component of the genetic variance and hence offer a limited understanding of the trait under study. A solution to tackle the aforementioned problems, and deepen the understanding of the genetic background of complex traits, is to move up the analysis from the single nucleotide polymorphism (SNP) to the gene and gene-set levels. In a gene-set analysis, a group of related genes that harbor significant SNP previously identified in GWAS is tested for over-representation in a specific pathway. The present study aimed to conduct a GWAS based on gene-set enrichment analysis for identifying the loci associated with economic traits using the high-density SNPs.
Materials and methods: In this research, to identify genes and biological pathways associated with some economic traits, GWAS based on gene-set enrichment analysis was conducted in a F2 population derived from a reciprocal cross by using Illumina iSelect 4K Japanese quail SNP Bead chip. For each bird, traits including body weight gain, feed intake, feed conversion ratio, tibia ash, and foot ash were measured. The SNPs that were associated with traits were identified based on mixed linear models using GCTA software and no correction was made to adjust the error rate. The gene-set analysis consisted of three different steps: (1) the assignment of SNPs to genes, (2) the assignment of genes to functional categories, and (3) the association analysis between each functional category and the phenotype of interest. In brief, for each trait, nominal P<0.005 from the GWAS analyses were used to identify significant SNPs. Using the biomaRt R package, the SNPs were assigned to genes if they were within the genomic sequence of the gene or a flanking region of 15 kb up- and downstream of the gene, to include SNP located in regulatory regions. For the assignment of the genes to functional categories, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases were used. The GO database designates biological descriptors to genes based on attributes of their encoded products and it is further partitioned into three components: biological process, molecular function, and cellular component. The KEGG pathway database contains metabolic and regulatory pathways, representing the actual knowledge of molecular interactions and reaction networks. Finally, a Fisher’s exact test was performed to test for overrepresentation of the significant genes for each gene set. The gene enrichment analysis was performed with the goseq R package. In the next step, bioinformatics analysis was implemented to identify the biological pathways performed in BioMart, Panther, DAVID, and GeneCards databases.
Results and discussion: Gene-set enrichment analysis has proven to be a great complement to GWAS. Among available gene set databases, GO is probably the most popular, whereas KEGG is a relatively new tool that is gaining ground in livestock genomics. We hypothesized that the use of gene-set information could improve prediction. It is likely that a better understanding of the biology underlying meat production specifically, plus an advance in the annotation of the quail genome, can provide new opportunities for predicting production using gene-set information. 11 SNPs on chromosomes 2, 3, 4, 5, 10, 18, 20, 24, and 27 located in NPY, DRD2, PTPRN2, BMPR1B, MYF5, IGF2BP1, MYO1E, FGF2, LDB2, BMP4, ACOX1, PCK1, PLCB4, PLCB, and PLCG1 genes were identified. According to gene-set enrichment analysis, 23 categories from gene ontology and the KEGG pathway were associated with the traits (P˂0.05). Among those categories, Protein glycosylation, Myoblast differentiation, Positive regulation of muscle cell differentiation and Biological MAPK signaling pathway, and Calcium signaling pathway have a significant association with skeletal muscle fiber, feed intake, and availability utilization.
Conclusions: This study supported previous results from GWAS and revealed additional regions associated with these economically important traits. Using the findings of this study could potentially be useful for genetic selection to improve production in Japanese quail.

کلیدواژه‌ها [English]

  • Body weight gain
  • Japanese quail
  • Genome scan
  • Feed conversion ratio
  • Feed intake
Abdelmanova, A. S., Dotsev, A. V., Romanov, M. N., Stanishevskaya, O. I., Gladyr, E. A., Rodionov, A. N., Vetokh, A. N., Volkova, N. A., Fedorova, E. S., Gusev, I. V., Griffin, D. K., Brem, G., & Zinovieva, N. A. (2021). Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type Russian White and Meat-Type White Cornish chickens. Biology (Basel), 10(9), 876.
Ambo, M., Moura, A. S. A. M. T., Ledur, M. C., & Pinto, L. F. B. (2009). Quantitative trait loci for performance traits in a broiler x layer cross. Animal Genetics, 40, 200-208.
Aarabi, H., Moradi Shahrbabak, M., Pakdel, A., Moradi Shahrbabak, H., & Esmailizadeh koshkoiyeh, A. (2016). Identification of novel SNP in promoter of Insulin-Like Growth Factor-I (IGF1) gene in Japanese quail by PCR-SSCP assay'. Iranian Journal of Animal Science, 47(2), 303-312. [In Persian]
Awad, A., & El-Tarabany, M. S. (2015). Association of single nucleotide polymorphism in bone morphogenetic protein receptor 1B (BMPR-1B) gene with growth traits in chicken. Kafkas Universitesi Veteriner Fakültesi Dergisi, 11, 1-6.
Cha, J., Choo, H., Srikanth, K., Lee, S. H., Son, J. W., Park, M. R., Kim, N., Jang, G. W., & Park, J. E. (2021). Genome-wide association study identifies 12 loci associated with body weight at age 8 weeks in Korean native chickens. Genes (Basel), 12(8), 1170.
Dadousis, C., Pegolo, S., Rosa, G. J. M., Gianola, D., Bittante, G., & Cecchinato, A. (2017). Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science, 100, 1223-1231.
Divya, D., Prakash, M. G., Chatterjee, R. N., Reddy, V. R., Reddy, Y. N., & Bhattacharya, T. K. (2018). Relative expression profile of AA genotype of BMP4 gene in broiler and layer chicken. Journal of Animal Research, 8, 549-554.
Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nature Protocols, 4, 1184-1191. 
Emrani, H., Masoudi, A. A., Vaez Torshizi, R., & Ehsani A. (2020). Genome-wide association study of shank length and diameter at different developmental stages in chicken F2 resource population. Animal Genetics, 51(5), 722-730.
Faenza, I., Bavelloni, A., & Fiume, R. (2004). Expression of phospholipase C beta family isoenzymes in C2C12 myoblasts during terminal differentiation. Journal of Cell Physiology, 200, 291-296.
Faveri, J. C., Pinto, L. F. B., de Camargo, G. M. F., Pedrosa, V. B., Peixoto, J. O., Marchesi, J. A. P., Kawski, V. L., Coutinho, L. L., & Ledur, M. C. (2019). Quantitative trait loci for morphometric and mineral composition traits of the tibia bone in a broiler × layer cross. Animal, 13(8), 1563-1569.
Guo, L., Han, J., Guo, H., Lv, D., & Wang, Y. (2019). Pathway and network analysis of genes related to osteoporosis. Molecular Medicine Reports, 20(2), 985-994.
Jiao, J., Dang, Y., Yang, Y., Gao, R., Zhang, Y., Kou, Z., Sun, X. F., & Gao, S. (2013). Promoting reprogramming by FGF2 reveals that the extracellular matrix is a barrier for reprogramming fibroblasts to pluripotency. Stem Cells, 31(4), 729-740.
Khaltabadi Farahani, A. H., Mohammadi, H., Moradi, M. H., Ghasemi, H. A., & Hajkhodadadi, I. (2020). Gene set enrichment analysis to identify genes and biological pathways associated with body weight in chicken, Animal Production Research, 9(3), 47-57. [In Persian]
Liang, S., Guo, H., Ma, K., Li, X., Wu, D., Wang, Y., Wang, W., Zhang, S., Cui, Y., Liu, Y., Sun, L., Zhang, B., Xin, M., Zhang, N., Zhou, H., Liu, Y., Wang, J., & Liu, L. (2021). A PLCB1-PI3K-AKT signaling axis activates EMT to promote cholangiocarcinoma progression. Cancer Research, 81(23), 5889-5903.
Liu, J., Liu, R., Wang, J., Zhang, Y., Xing, S., Zheng, M., Cui, H., Li, Q., Li, P., Cui, X., Li, W., Zhao, G., & Wen, J. (2018). Exploring Genomic Variants Related to residual feed intake in local and commercial chickens by whole genomic resequencing. Genes (Basel), 9(2), 57.
Marchesi, J. A. P., Ono, R. K., Cantão, M. E., Ibelli, A. M. G., Peixoto, J. O., Moreira, G. C. M., Godoy, T. F., Coutinho, L. L., Munari, D. P., & Ledur, M. C. (2021). Exploring the genetic architecture of feed efficiency traits in chickens. Scientific Reports, 11(1), 4622.
Mohammadi, H., Rafat, S. A., Moradi Shahrbabak, H., Shodja, J., & Moradi, M. H. (2020). Genome-wide association study and gene ontology for growth and wool characteristics in Zandi sheep. Journal of Livestock Science and Technologies, 8(2), 45-55.
Mahmoudi Zarandi, M., Rokouei, M., Vafaei Valleh, M., & Maghsoudi, A. (2020). Estimation of genetic parameters for body weight gain and feed efficiency traits in Japanese quail. Animal Production, 22(1), 9-22. [In Persian]
Najafi, M. H., Mohammadi, Y., Najafi, A., Shamsolahi, M., & Mohammadi, H. (2020). Lairage time effect on carcass traits, meat quality parameters and sensory properties of Mehraban fat-tailed lambs subjected to short distance transportation. Small Ruminant Research, 18, 106122.
Peñagaricano, F., Weigel, K. A., Rosa, G. J., & Khatib, H. (2013). Inferring quantitative trait pathways associated with bull fertility from a genome-wide association study. Frontiers in Genetics, 3, 307-314.
Piórkowska, K., Żukowski, K., Połtowicz, K., Nowak, J., Ropka-Molik, K., Derebecka, N., Wesoły, J., & Wojtysiak, D. (2020). Identification of candidate genes and regulatory factors related to growth rate through hypothalamus transcriptome analyses in broiler chickens. BMC Genomics, 21(1), 509.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., & Bender, D. (2007). PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics, 81, 559-575.
Rescan, P. Y. (2001). Regulation and functions of myogenic regulatory factors in lower vertebrates. Comparative Biochemistry and Physiology-Part B: Biochemistry & Molecular Biology, 130, 1-12. 
Seabury, C. M., Oldeschulte, D. L., Saatchi, M., Beever, J. E., Decker, J. E., Halley, Y. A., Bhattarai, E. K., Molaei, M., Freetly, H. C., Hansen, S. L., Yampara-Iquise, H., Johnson, K. A., Kerley, M. S, Kim, J., Loy, D. D., Marques, E., Neibergs, H. L., Schnabel, R. D., Shike, D. W., Spangler, M. L., Weaber, R. L., Garrick, D. J,. & Taylor, J. F. (2017). Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics, 18(1), 386-396.
Srikanth, K., Lee, S. H., Chung, K. Y., Park, J. E., Jang, G. W., Park, M. R., Kim, N. Y., Kim, T. H., Chai, H. H., Park, W. C., & Lim, D. (2020). A gene-set enrichment and protein-protein interaction network-based GWAS with regulatory SNPs identifies candidate genes and pathways associated with carcass traits in Hanwoo cattle. Genes (Basel), 11(3), 316. 
Sinpru, P., Riou, C., Kubota, S., Poompramun, C., Molee, W., & Molee, A. (2021). Jejunal Transcriptomic Profiling for Differences in Feed Conversion Ratio in Slow-Growing Chickens. Animals (Basel), 11(9), 2606.
Vollmar, S., Haas, V., Schmid, M., Preuß, S., Joshi, R., Rodehutscord, M., & Bennewitz, J. (2021). Mapping genes for phosphorus utilization and correlated traits using a 4k SNP linkage map in Japanese quail (Coturnix japonica). Animal Genetics, 52(1), 90-98.
Wei, Y., Zhang, G. X., Zhang, T., Wang, J. Y., Fan, Q. C., Tang, Y., Ding, F. X., & Zhang, L. (2016). Myf5 and MyoG gene SNPs associated with Bian chicken growth trait. Genetics and Molecular Research, 15(3), gmr.15037043.
Xiao, C., Deng, J., Zeng, L., Sun, T., Yang, Z., & Yang, X. (2021). Transcriptome Analysis Identifies Candidate Genes and Signaling Pathways Associated With Feed Efficiency in Xiayan Chicken. Frontiers in Genetics, 12, 607719.
Xue, Q., Zhang, G., Li, T., Ling, J., Zhang, X., & Wang, J. (2017). Transcriptomic profile of leg muscle during early growth in chicken. PLoS One, 12(3), e0173824.
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 76-82.
Yang, X., Sun, J., Zhao, G., Li, W., Tan, X., Zheng, M., Feng, F., Liu, D., Wen, J., & Liu, R. (2021). Identification of major loci and candidate genes for meat production-related traits in broilers. Frontiers in Genetics, 12, 645107.
Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Method gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, 14-23. 
Yuan, L., Ni, Y., Barth, S., Wang, Y., Grossmann, R., & Zhao, R. (2009). Layer and broiler chicks exhibit similar hypothalamic expression of orexigenic neuropeptides but distinct expression of genes related to energy homeostasis and obesity. Brain Research, 1273, 18-28.
Zhang, Y., Wang, Y., Li, Y., Wu, J., Wang, X., Bian, C., Tian, Y., Sun, G., Han, R., Liu, X., Jiang, R., Wang, Y., Li, G., Li, W., Hu, X., & Kang, X. (2021). Genome-wide association study reveals the genetic determinism of growth traits in a Gushi-Anka F2 chicken population. Heredity, 126, 293-307.
Zhao, C., Raza, S. H. A., Khan, R., Sabek, A., Khan, S., Ullah, I., Memon, S., El-Aziz, A. H. A., Shah, M. A., Shijun, L., Wang, L., Liu, X., Zhang, Y., Gui, L., & Zan, L. (2020). Genetic variants in MYF5 affected growth traits and beef quality traits in Chinese Qinchuan cattle. Genomics, 112(4), 2804-2812.