پویش ژنومی نشانه های انتخاب در گوسفندان پوستی و پشمی ایرانی با استفاده از روش های برآوردگر نااُریب FST و hapFLK

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان

3 استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

4 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه اراک

5 استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان

چکیده

بررسی نشانه­های انتخاب در کل ژنوم به شناسایی ساز و کارهای انتخاب و تشخیص مناطقی از ژنوم که طی سالیان متمادی به­صورت طبیعی و یا مصنوعی انتخاب شده­اند، کمک می­کند. هدف از این پژوهش، شناسایی نقاطی از ژنوم در گوسفندان پوستی و پشمی بود که طی سال­های مختلف انتخاب شده­اند. بدین منظور، 80 رأس گوسفند پوستی (قره­گل، سیاه­کبود و کبوده­شیراز) و پشمی (سنجابی، کرمانی و بلوچی) با استفاده از آرایه­های گوسفندیk 600 تعیین ژنوتیپ شدند. برای شناسایی نشانه­های انتخاب از آزمون نااُریبFST  (تتا) و آزمون hapFLK استفاده شد .نتایج تتا، 26 منطقۀ ژنومی روی کروموزوم­های 1، 2، 6، 19 و 24، و نتایج hapFLK، هفت منطقه ژنومی روی کروموزوم­های 6 و 19 شناسایی کرد. تجزیه و تحلیل اطلاعات زیستی (بیوانفورماتیکی) نشان داد که برخی از این مناطق ژنومی با ژن­های مؤثر بر صفات رنگدانه و مشخصات پشم (KIT، MITF، IGSF10 و PDGFRA)، عضلات (MICALL2)، اتساع عروق و پاسخ ایمنی (P2RY) و سرطان (MIR339، ELFN1، MAD1L1 و GPR87) هم­پوشانی دارند. بررسی QTLهای گزارش شده نیز نشان داد که این مناطق با QTLهای صفات مهم اقتصادی از جمله صفات مرتبط با مشخصات گوشت، لاشه، شیر، وزن بدن، تراکم استخوان و تعداد کل بره­های متولد شده در ارتباط هستند. همچنین نواحی مورد انتخاب با مسیرهای درگیر در تمایز ملانوسیت و رنگدانه­ها، تمایز سلول­های بنیادی، فرآیندهای سلولی، توسعه سیستم ایمنی، سیستم خونی، فرآیندهای باروری و سلولی ارتباط داشتند. به هر حال، برای شناسایی نقش دقیق ژن­ها و QTLهای شناسایی شده، لازم است مطالعات تکمیلی انجام گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genomic scanning of selection signature in Iranian skin and wool sheep using FST unbiased estimator and hapFLK methods

نویسندگان [English]

  • Z. Patiabadi 1
  • M. Razmkabir 2
  • A. Esmailizadeh Koshkoiyeh 3
  • M. H. Moradi 4
  • A. Rashidi 5
1 Ph.D. Student, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2 Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
3 Professor, Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
4 Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Arak, Arak, Iran
5 Professor, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Introduction:  The principal aim of the sheep industry worldwide is to produce high-quality meat. In addition to the meat, milk, and wool production are the economic traits in sheep breeding programs. Wool production is one of the most important economic characteristics of sheep with a complex physiological and biochemical process that is influenced by genetics, environment, and nutrition. Almost all Iranian sheep breeds are double-coated and produce carpet wool. Therefore, considering the role of wool on the country's economy, it is necessary to conduct a study to identify the genetic factors affecting this trait. Identifying the genomic regions under selection is effective in understanding the processes involved in the evolution of the genome and also in identifying the genomic regions involved in the emergence of economic traits. Selective signatures in the whole genome can help us to understand the mechanisms of selection and to identify the genomic regions that have been under natural or artificial selection for many years. Since Selective signatures are usually associated with major effect genes and important economic traits, they can provide suitable information sources to improve the performance of selection programs in the future. The objective of this study was to identify the genomic regions that have been under selection in skin and wool sheep breeds.
Materials and methods: In the present study, Illumina ovine SNP600K BeadChip genomic arrays of 80 sheep from six breeds were used, three breeds were bred for their skin (Karakul, SiahKabud, and Gray Shiraz) and three breeds were bred for their wool (Sanjabi, Kermani and Baluchi). Unbiased methods of Weir and Cockerham’s FST (Theta) and hapFLK were used to detect the selection signatures. Also, to check the genes and QTLs in the selected regions, the Biomart database, OAR 3.1 version of the sheep genome, was used, and the function of the identified genes was analyzed through a wide search in different databases such as Genecards and OMIM. Finally, the list of genes related to the selected regions was reported. For this purpose, the chromosomal position of SNPs with high numerical values of theta and hapFLK, as well as the 250 kbp region around these markers, were further investigated. Then, the DAVID database online search was used to investigate the biological and functional processes of genes and to study the ontology. Finally, Cytoscape software was used to determine gene networks.
Then, DAVID database online search was used to investigate the biological and functional processes of genes and to study the ontology.
سپس از جستجوی آنلاین پایگاه داده DAVID برای بررسی فرآیندهای بیولوژیکی و عملکردی ژن ها و مطالعه هستی شناسی استفاده شد.
Then, to investigate the biological and functional processes of genes and to study the ontology, DAVID database was used to search online.
سپس برای بررسی فرآیندهای بیولوژیکی و عملکردی ژن ها و مطالعه هستی شناسی از پایگاه داده DAVID برای جستجوی آنلاین استفاده شد.
Can't load full results
Try again
Retrying...
Results and discussion: The results of the Theta analysis revealed 26 genomic regions on 1, 2, 6, 19, and 24 chromosomes, and the results of hapFLK revealed seven genomic regions on 6 and 19 chromosomes. Bioinformatics analysis demonstrated that some of these genomic regions overlapped with known genes related to pigment traits and characteristics of wool (KIT on chr 6, MITF on chr 19, IGSF10 on chr 1, PDGFRA on chr 6), muscles (MICALL2 on chr 24), vasodilation and immune response (P2RY on chr 1) and cancer (MIR339 on chr 24, ELFN1 on chr 24, MAD1L1 on chr 24, GPR87 on chr 1). The investigation of reported QTLs showed that these regions are related to QTLs of important economic traits, including traits related to meat, carcass, milk, body weight, bone density, and the total number of lambs born. Also, the analysis of Gene Ontology and Enriched pathway terms in regions under positive selection were related to the pathways involved in the differentiation of melanocytes and pigments, differentiation of stem cells, cellular processes, development of the immune system, blood system, reproductive and cellular processes. The results of the gene networks with the information obtained from Theta and hapFLK statistics showed that the genes identified were significantly active in the development and morphogenesis networks of the embryonic digestive tract, the networks related to pigment and melanocyte differentiation, and the networks related to Purine and G protein. However, to identify the exact function of the identified genes and QTLs, it is recommended to carry out more investigations.
نتایج شبکه‌های ژنی با اطلاعات به‌دست‌آمده از آمار تتا و hapFLK نشان داد که ژن‌های شناسایی‌شده به‌طور معنی‌داری در شبکه‌های رشد و مورفوژنز دستگاه گوارش جنینی، شبکه‌های مربوط به تمایز رنگدانه و ملانوسیت و شبکه‌های مربوط به
The results of the gene networks with the information obtained from theta and hapFLK statistics showed that the genes identified were significantly in the development and morphogenesis networks of the embryonic digestive system, the networks related to the differentiation of pigment and melanocytes and the networks related to
نتایج شبکه‌های ژنی با اطلاعات به‌دست‌آمده از آمار تتا و hapFLK نشان داد که ژن‌های شناسایی‌شده به‌طور معنی‌داری در شبکه‌های رشد و مورفوژنز دستگاه گوارش جنینی، شبکه‌های مربوط به تمایز رنگدانه‌ها و ملانوسیت‌ها و شبکه‌های مربوط به
Can't load full results
Try again
Retrying...
Conclusions: The results of the present study and the identified genomic regions can play an important role in the study of the effect of the selection on population differentiation in two sheep breeds that bred for skin and sheep production. Subsequently, this would direct us to identify the genomic regions associated with traits that differentiate these groups. However, these areas need to be confirmed in other independent studies with more samples. In general, the data of this research can be used in research related to genomic selection, design of mating systems, and additional reviews and evaluations to improve skin and wool production in sheep.

کلیدواژه‌ها [English]

  • Theta test
  • hapFLK test
  • Genomic scanning
  • Iranian sheep
  • Selection signature
Agar, N., & Young, A. R. (2005). Melanogenesis: a photoprotective response to DNA damage?. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 121-132. doi: 10.1016/j.mrfmmm.2004.11.016
Bai, R., Zhang, J., He, F., Li, Y., Dai, P., Huang, Z., Han, L., Wang, Z., Gong, Y., & Xie, C. (2022). GPR87 promotes tumor cell invasion and mediates the immunogenomic landscape of lung adenocarcinoma. Communications Biology, 5(1), 663. doi: 10.1038/s42003-022-03506-6
Baksh, D., Davies, J. E., & Zandstra, P. W. (2003). Adult human bone marrow–derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Experimental hematology, 31(8), 723-732. doi: 10.1016/S0301-472X(03)00106-1
Barendse, W., Harrison, B. E., Bunch, R. J., Thomas, M. B., & Turner, L. B. (2009). Genome wide signatures of positive selection: the comparison of independent samples and the identification of regions associated to traits. BMC Genomics, 10(1), 1-15. doi: 10.1186/1471-2164-10-178
Barrett, J. C., Fry, B., Maller, J. D. M. J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. doi: 10.1093/bioinformatics/bth457
Biswas, S., & Akey, J. M. (2006). Genomic insights into positive selection. Trends in Genetics, 22(8), 437-446.
Bonhomme, M., Chevalet, C., Servin, B., Boitard, S., Abdallah, J., Blott, S., & SanCristobal, M. (2010). Detecting selection in population trees: the Lewontin and Krakauer test extended. Genetics, 186(1), 241-262. doi: 10.1534/genetics.110.117275
Burnstock, G. (2013). Introduction to purinergic signalling in the brain. Glioma Signaling, 986, 1-12. doi: 10.1007/978-3-030-30651-9
Cao, W., Zhou, X., McCallum, N. C., Hu, Z., Ni, Q. Z., Kapoor, U., Heil, C. M., Cay, K. S., Zand, T., Mantanona, A. J., Jayaraman, A., Dhinojwala, A., Deheyn, D. D., Shawkey, M. D., Burkart, M. D., Rinehart, J. D., & Gianneschi, N. C. (2021). Unraveling the structure and function of melanin through synthesis. Journal of the American Chemical Society, 143(7), 2622-2637. doi: 10.1021/jacs.0c12322
Cao, Y., Tanaka, K., Nguyen, C. T., & Stacey, G. (2014). Extracellular ATP is a central signaling molecule in plant stress responses. Current Opinion in Plant Biology, 20, 82-87. doi: 10.1016/j.pbi.2014.04.009
Ceylan, S., Bahadori, F., & Akbas, F. (2020). Engineering of siRNA loaded PLGA Nano-Particles for highly efficient silencing of GPR87 gene as a target for pancreatic cancer treatment. Pharmaceutical Development and Technology, 25(7), 855-864. doi: 10.1080/10837450.2020.1745232
Crespo-Piazuelo, D., Ramayo-Caldas, Y., González-Rodríguez, O., Pascual, M., Quintanilla, R., & Ballester, M. (2021). A co-association network analysis reveals putative regulators for health-related traits in pigs. Frontiers in Immunology, 12, 784978. doi: 10.3389/fimmu.2021.784978
de Simoni Gouveia, J. J., Paiva, S. R., McManus, C. M., Caetano, A. R., Kijas, J. W., Faco, O., Azevedo, H. C., de Araujo A. M., de Souza, C. J. H., Yamagishi, M. E. B., Carneiro, P. L. S., Lôbo, R. N. B., de Oliveira, S. M. P., & da Silva, M. V. G. (2017). Genome-wide search for signatures of selection in three major Brazilian locally adapted sheep breeds. Livestock Science, 197, 36-45. doi: 10.1016/j.livsci.2017.01.006
Dolan, J., & Mitchell, K. J. (2013). Mutation of Elfn1 in mice causes seizures and hyperactivity. PloS One, 8(11), e80491. doi: 10.1371/journal.pone.0080491
Edea, Z., Dessie, T., Dadi, H., Do, K. T., & Kim, K. S. (2017). Genetic diversity and population structure of Ethiopian sheep populations revealed by high-density SNP markers. Frontiers in Genetics, 8, 218. doi: 10.3389/fgene.2017.00218
Erlinge, D. (2011). P2Y receptors in health and disease. Advances in Pharmacology, 61, 417-439. doi: 10.1016/B978-0-12-385526-8.00013-8
Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M., & Servin, B. (2013). Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics, 193(3), 929-941. doi: 10.1534/genetics.112.147231
Fariello, M. I., Servin, B., Tosser-Klopp, G., Rupp, R., Moreno, C., International Sheep Genomics Consortium, San Cristobal, M., & Boitard, S. (2014). Selection signatures in worldwide sheep populations. PloS One, 9(8), e103813. doi: 10.1371/journal.pone.0103813
Fedorow, H., Tribl, F., Halliday, G., Gerlach, M., Riederer, P., & Double, K. L. (2005). Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease. Progress in Neurobiology, 75(2), 109-124. doi: 10.1016/j.pneurobio.2005.02.001
Fontanesi, L., Dall’Olio, S., Beretti, F., Portolano, B., & Russo, V. (2011). Coat colours in the Massese sheep breed are associated with mutations in the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes. Animal, 5(1), 8-17. doi: 10.1017/S1751731110001382
Garcia-Gamez, E., Reverter, A., Whan, V., McWilliam, S. M., Arranz, J. J., International Sheep Genomics Consortium, & Kijas, J. (2011). Using regulatory and epistatic networks to extend the findings of a genome scan: identifying the gene drivers of pigmentation in merino sheep. PloS One, 6(6), e21158. doi: 10.1371/journal.pone.0021158
Grossman, S. R., Shylakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., Hostetter, E., Angelino, E., Garber, M., Zuk, O., Lander, E. S., Schaffner, S. F., & Sabeti, P. C. (2010). A composite of multiple signals distinguishes causal variants in regions of positive selection. Science, 327(5967), 883-886. doi: 10.1126/science.1183863
Haining, R. L., & Achat-Mendes, C. (2017). Neuromelanin, one of the most overlooked molecules in modern medicine, is not a spectator. Neural Regeneration Research, 12(3), 372. doi: 10.4103/1673-5374.202928
Hayes, B. J., Lien, S., Nilsen, H., Olsen, H. G., Berg, P., MacEachern, S., Potter, S., & Meuwissen, T. H. E. (2008). The origin of selection signatures on bovine chromosome 6. Animal Genetics, 39(2), 105-111. doi: 10.1111/j.1365-2052.2007.01683.x
Hirobe, T. (2011). How are proliferation and differentiation of melanocytes regulated?. Pigment Cell & Melanoma Research, 24(3), 462-478. doi: 10.1111/j.1755-148X.2011.00845.x
Ito, S., & Wakamatsu, K. (2003). Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Research, 16(5), 523-531. doi: 10.1034/j.1600-0749.2003.00072.x
Janicki, P. K., Eyileten, C., Ruiz-Velasco, V., Sedeek, K. A., Pordzik, J., Czlonkowska, A., Kurkowska-Jastrzebska, I., Sugino, S., Imamura-Kawasawa, Y., Mirowska-Guzel, D., & Postula, M. (2017). Population-specific associations of deleterious rare variants in coding region of P2RY1–P2RY12 purinergic receptor genes in large-vessel ischemic stroke patients. International Journal of Molecular Sciences, 18(12), 2678. doi: 10.3390/ijms18122678
Karcz, T., Nakano, H., Jacobson, K., & Cook, D. (2018). The P2Y purinoceptor, P2Y14R, promotes AHR in an animal model of asthma. The Journal of Immunology, 200(Supplement 1), 44-19. doi: 10.4049/jimmunol.200.Supp.44.19
Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., Gietzen, K., Paiva, S., Barendse, W., Ciani, E., Raadsma, H., McEwan, J., Dalrymple, B., & International Sheep Genomics Consortium. (2012). Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10(2), e1001258. doi: 10.1371/journal.pbio.1001258
Koseniuk, A., Ropka-Molik, K., Rubiś, D., & Smołucha, G. (2018). Genetic background of coat colour in sheep. Archives Animal Breeding, 61(2), 173-178. doi: 10.5194/aab-61-173-2018
Larade, K., & Storey, K. B. (2004). Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate. Journal of Experimental Biology, 207(8), 1353-1360. doi: jeb/article/207/8/1353/15077
Lei, R., Feng, L., & Hong, D. (2020). ELFN1-AS1 accelerates the proliferation and migration of colorectal cancer via regulation of miR-4644/TRIM44 axis. Cancer Biomarkers, 27(4), 433-443. doi: 10.3233/CBM-190559
Li, H., Zhang, G. Y., Pan, C. H., Zhang, X. Y., & Su, X. Y. (2019). LncRNA MAFG-AS1 promotes the aggressiveness of breast carcinoma through regulating miR-339-5p/MMP15. European Review for Medical & Pharmacological Sciences, 23(7), 2838-2846. doi: 10.26355/eurrev_201904_17561
Li, S., Chen, W., Zheng, X., Liu, Z., Yang, G., Hu, X., & Mou, C. (2020). Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity. Gene, 758, 144968. doi: 10.1016/j.gene.2020.144968
Liu, L., Harris, B., Keehan, M., & Zhang, Y. (2009). Genome scan for the degree of white spotting in dairy cattle. Animal Genetics, 40(6), 975-977. doi: 10.1111/j.1365-2052.2009.01936.x
MacEachern, S., Hayes, B., McEwan, J., & Goddard, M. (2009). An examination of positive selection and changing effective population size in Angus and Holstein cattle populations (Bos taurus) using a high density SNP genotyping platform and the contribution of ancient polymorphism to genomic diversity in Domestic cattle. BMC Genomics, 10(1), 1-19. doi: 10.1186/1471-2164-10-181
Manzari, Z., Mehrabani- Yeghaneh, H., Nejati- Javaremi, A., Moradi, M. H. & Gholizadeh, M. (2017). Detection of loci under positive selection in Iranian Baluchi and Zel sheep breeds. Iranian Journal of Animal Science,47(3), 389-398. [In Persian]
Mastrangelo, S., Bahbahani, H., Moioli, B., Ahbara, A., Al Abri, M., Almathen, F., da Silva, A., Belabdi, I., Portolano, B., Mwacharo, J. M., Hanotte, O., Pilla, F., & Ciani, E. (2019). Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS One, 14(6), e0209632. doi: 10.1371/journal.pone.0209632
MITFgene. Genetics Home Reference. National Institutes of Health, U.S. Department of Health and Human Services.
Mohammadi, H., Rafat, S. A., Moradi Shahrebabak, H., Shodja, J. & Moradi, M. H. (2018). Genome-wide analysis for detection of loci under positive selection in Zandi sheep breed. Iranian Journal of Animal Science, 48(4),533-548. DOI: 10.22059/ijas.2017.229950.653520 [In Persian]
Moradi, M. H., Khaltabadi-Farahani, A. H., Khodaei-Motlagh, M., Kazemi-Bonchenari, M., & McEwan, J. (2022). Genome-wide selection of discriminant SNP markers for breed assignment in indigenous sheep breeds. Annals of Animal Science, 21(3), 807-831. doi: 10.2478/aoas-2020-0097
Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13(1), 1-15. doi: 10.1186/1471-2156-13-10
Musina, R. A., Egorov, E. E., & Beliavskiĭ, A. V. (2004). Stem cells: properties and perspectives of therapeutic use. Molekuliarnaia Biologiia, 38(4), 563-577. doi: med/15456128
Neves, S. R., Ram, P. T., & Iyengar, R. (2002). G protein pathways. Science, 296(5573), 1636-1639. doi: 10.1126/science.1071550
Nizon, M., Laugel, V., Flanigan, K. M., Pastore, M., Waldrop, M. A., Rosenfeld, J. A., Marom, R., Xiao, R., Gerard, A., Pichon, O., Le Caignec, C., Gérard, M., Dieterich, K., Truitt Cho, M., McWalter, K., Hiatt, S., Thompson, M. L., Bézieau, S., Wadley, A., Wierenga, K. J., Egly, J. M., & Isidor, B. (2019). Variants in MED12L, encoding a subunit of the mediator kinase module, are responsible for intellectual disability associated with transcriptional defect. Genetics in Medicine, 21(12), 2713-2722. doi: 10.1038/s41436-019-0557-3
North, R. A. (2002). Molecular physiology of P2X receptors. Physiological Reviews, 82(4), 1013-1067. doi: 10.1152/physrev.00015.2002
Olde, B., & Leeb-Lundberg, L. F. (2009). GPR30/GPER1: searching for a role in estrogen physiology. Trends in Endocrinology & Metabolism, 20(8), 409-416.
Ong, D. S. T., Wang, L., Zhu, Y., Ho, B., & Ding, J. L. (2005). The response of ferritin to LPS and acute phase of Pseudomonas infection. Journal of Endotoxin Research, 11(5), 267-280. doi: 10.1177/09680519050110050301
Pavlidis, P., & Alachiotis, N. (2017). A survey of methods and tools to detect recent and strong positive selection. Journal of Biological Research-Thessaloniki, 24, 1-17. doi: 10.1186/s40709-017-0064-0
Peñagaricano, F., Zorrilla, P., Naya, H., Robello, C., & Urioste, J. I. (2012). Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep. Journal of Applied Genetics, 53, 99-106. doi: 10.1007/s13353-011-0066-9
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575. doi: 10.1086/519795
Purvis, I. W., & Franklin, I. R. (2005). Major genes and QTL influencing wool production and quality: a review. Genetics Selection Evolution, 37(Suppl. 1), S97-S107. doi:10.1051/gse:2004028
Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T. M., Fries, R., Nielsen, R., & Simianer, H. (2014). Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genetics, 10(2), e1004148. doi: 10.1371/journal.pgen.1004148
R Development Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing. https://www.Rproject.
Rastifar, M., Nejati-Javaremi, A., Moradi, M. H. & Abdollahi-Arpanahi, R. (2015). Identification of genomic regions associated with wool diameter in Iranian sheep breeds. Iranian Journal of Animal Science, 46(1), 65-72. doi: 10.22059/ijas.2015.54592 [In Pranian]
Reece, J. (2002). Biology. San Francisco: Benjamin Cummings. ISBN 0-8053-6624-5.
Rees, J. L. (2003). Genetics of hair and skin color. Annual Review of Genetics, 37(1), 67-90. doi: 10.1146/annurev.genet.37.110801.143233
Saravanaperumal, S. A., Pallotti, S., Pediconi, D., Renieri, C., & La Terza, A. (2021). Exon-1 skipping and intron-1 retaining by alternative splicing of the c-KIT gene encodes a novel splice variant in the skin of Merino sheep (Ovis aries). Molecular Biology Reports, 48(5), 4987-4994. doi: 10.1007/s11033-021-06486-8
Signer‐Hasler, H., Burren, A., Ammann, P., Drögemüller, C., & Flury, C. (2019). Runs of homozygosity and signatures of selection: a comparison among eight local Swiss sheep breeds. Animal Genetics, 50(5), 512-525. doi: 10.1111/age.12828
Simianer, H., Ma, Y., & Qanbari, S. (2014). Statistical problems in livestock population genomics. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production. Pp. 17-22.
Smit, M. A., Shay, T. L., Beever, J. E., Notter, D. R., & Cockett, N. E. (2002). Identification of an agouti‐like locus in sheep. Animal Genetics, 33(5), 383-385. doi: 10.1046/j.1365-2052.2002.00896_5.x
Suzuki, H. (2013). Evolutionary and phylogeographic views on Mc1r and Asip variation in mammals. Genes & Genetic Systems, 88(3), 155-164. doi: 10.1266/ggs.88.155
Taherpour, N., & Mirzaei, F. (2012). Wool characteristics of crossbred Baghdadi wild ram and Iran native sheep. Agricultural Sciences, 3(2), 184-186. doi: 10.4236/as.2012.32021
Tobin, D. J., & Bystryn, J. C. (1996). Different populations of melanocytes are present in hair follicles and epidermis. Pigment Cell Research, 9(6), 304-310. doi: 10.1111/j.1600-0749.1996.tb00122.x
Ulloa-Montoya, F., Verfaillie, C. M., & Hu, W. S. (2005). Culture systems for pluripotent stem cells. Journal of Bioscience and Bioengineering, 100(1), 12-27. doi: 10.1263/jbb.100.12
Ulrich, H., Abbracchio, M. P., & Burnstock, G. (2012). Extrinsic purinergic regulation of neural stem/progenitor cells: implications for CNS development and repair. Stem Cell Reviews and Reports, 8, 755-767. doi: 10.1007/s12015-012-9372-9
Vidal, R., Miravalle, L., Gao, X., Barbeito, A. G., Baraibar, M. A., Hekmatyar, S. K., Widel, M., Bansal, N., Delisle, M. B., & Ghetti, B. (2008). Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice. Journal of Neuroscience, 28(1), 60-67. doi: 10.1523/JNEUROSCI.3962-07.2008
Wang, Z., Zhang, H., Yang, H., Wang, S., Rong, E., Pei, W., Li, H, & Wang, N. (2014). Genome-wide association study for wool production traits in a Chinese Merino sheep population. PloS One, 9(9), e107101. doi: 10.1371/journal.pone.0107101
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6), 1358-1370.
Wilkins, B. P., Finch, A. M., Wang, Y., & Smith, N. J. (2022). Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis?. Trends in Endocrinology & Metabolism, 33(7), 481-492. doi: 10.1016/j.tem.2022.04.008
Xu, Y., Zhang, L., Shi, T., Zhou, Y., Cai, H., Lan, X., Zhang, C., Lei, C., & Chen, H. (2013). Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mammalian Genome, 24, 508-516. doi: 10.1007/s00335-013-9483-x
Yar Ahmadi, B., Islami, M. & Tahirpour Dariyo, N. (2008). The effect of age and sex on some properties of Lori sheep's wool. Journal of Agricultural Sciences, 13(1), 203-210. [In Persian]
Yu, H., Rimbert, A., Palmer, A. E., Toyohara, T., Xia, Y., Xia, F., Ferreira, L. M. R., Chen, Z., Chen, T., Loaiza, N., Horwitz, N. B., Kacergis, M. C., Zhao, L., BIOS Consortium, Soukas, A. A., Kuivenhoven, J. A., Kathiresan, S., & Cowan, C. A. (2019). GPR146 deficiency protects against hypercholesterolemia and atherosclerosis. Cell, 179(6), 1276-1288. doi: 10.1016/j.cell.2019.10.034
Yu, M., Wang, Y., Wang, Z., Liu, Y., Yu, Y., & Gao, X. (2019). Taurine promotes milk synthesis via the GPR87-PI3K-SETD1A signaling in BMECs. Journal of Agricultural and Food Chemistry, 67(7), 1927-1936. doi: 10.1021/acs.jafc.8b06532
Zhao, R., Liu, N., Han, F., Li, H., Liu, J., Li, L., Wang, G., & He, J. (2020). Identification and characterization of circRNAs in the skin during wool follicle development in Aohan fine wool sheep. BMC Genomics, 21(1), 1-14. doi: 10.1186/s12864-020-6599-8
Zhu, L. Y., Zhang, W. M., Yang, X. M., Cui, L., Li, J., Zhang, Y. L., Wang, Y. H., Ao, J. P., Ma, M. Z., Lu, H., Ren, Y., Xu, S. H., Yang, G. D., Song, W. W., Wang, J. H., Zhang, X. D., Zhang, R., & Zhang, Z. G. (2015). Silencing of MICAL-L2 suppresses malignancy of ovarian cancer by inducing mesenchymal–epithelial transition. Cancer Letters, 363(1), 71-82. doi: 10.1016/j.canlet.2015.04.002