بهبود وضعیت آنتی اکسیدانی، پاسخ های التهابی، فراسنجه های خونی، بیوشیمیایی و عملکرد با مکمل سازی سیاه دانه (Nigella sativa) در جوجه های گوشتی در شرایط تنش اکسیداتیو فیزیولوژیک القایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه علوم دامی، دانشگاه پیام نور، تهران، ایران

2 دانشیار، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

3 دانش آموخته کارشناسی ارشد بیوشیمی، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

چکیده

این مطالعه به­منظور بررسی آثار پودر سیاه­دانه بر عملکرد رشد و توان آنتی­اکسیدانی، پاسخ­های التهابی، تغییرات بیوشیمیایی، هماتولوژی در جوجه­های گوشتی در شرایط تنش اکسیداتیو القایی با پراکسید هیدروژن انجام شد. تعداد 200 قطعه جوجه گوشتی سویه راس 308 در یک طرح کاملاٌ تصادفی به چهار تیمار، هر تیمار در پنج تکرار دارای 10 جوجه یک­روزه اختصاص داده شد. چهار تیمار آزمایشی شامل: 1- تیمار شاهد (تغذیه شده با جیره پایه) و تیمارهای 2، 3 و 4- به­ترتیب دریافت­کننده جیره پایه به­علاوه سطوح 5/0، 1 و 5/1 درصد پودر سیاه­دانه بودند. برای القای تنش اکسیداتیو، همه پرندگان از روز 14 تا روز 42 آزمایش، آب آّشامیدنی حاوی یک درصد  H2O2دریافت کردند. نتایج نشان داد مکمل­سازی سیاه­دانه در جوجه­های زیر شرایط تنش اکسیداتیو القایی، به­طور معنی­داری باعث بهبود عملکرد رشد، افزایش فعالیت آنزیم­های آنتی اکسیدانی و کاهش MDA در سرم، بافت کبد و طحال شد ( 05/0(P<. علاوه بر این، مکمل­سازی سیاه­دانه به­طور معنی­داری سبب کاهش سطح سرمی سیتوکین­های التهابیIL-6  و TNF-α و افزایش سیتوکین ضد التهابی IL-10  (05/0(P< شد. همچنین، مکمل­سازی سیاه­دانه بدون تاثیر بر تعداد گلبول قرمز، درصد هماتوکریت و مقدار هموگلوبین، سبب افزایش شمار گلبول سفید، درصد لنفوسیت و کاهش درصد هتروفیل خون شد (05/0(P<. سطح سرمی تری­گلیسیرید، کلسترول و آنزیم­های ALT،AST  و ALP نیز به­طور معنی­داری تحت تاثیر سیاه­دانه کاهش یافت ( 05/0(P<. به­طور کلی، نتایج این تحقیق نشان داد استفاده از سیاه­دانه می­تواند از راه بهبود توان آنتی­اکسیدانی و پاسخ­های التهابی، سبب بهبود عملکرد جوجه­های گوشتی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improvement of antioxidant status, inflammatory responses, hematological and biochemical parameters, and performance by black seed (Nigella sativa) supplementation in broiler chickens under induced physiological oxidative stress

نویسندگان [English]

  • M. Fathi 1
  • Sh. Saidian 2
  • S. Moradi 3
1 Associate Professor, Department of Animal Science, Payame Noor University, Tehran, Iran
2 Associate Professor, Department of Biology, Payame Noor University, Tehran, Iran
3 MSc in Biochemistry, Department of Biology, Payame Noor University, Tehran, Iran
چکیده [English]

Introduction: Oxidative stress is inevitable in broiler chicken production, and it affects the physiological, behavioral, and biochemical status of growing chicken which ultimately deteriorates meat quality. The imbalance among free radicals and antioxidant enzymes within living cells or tissues leads to the oxidation of lipids, proteins, and nucleic acids and is a fundamental cause of oxidative stress. When the antioxidant mechanism within living cells weakens, the production of free radicals increases under physiological oxygen metabolism, and reactive species (i.e., reactive oxygen species and reactive nitrogen species) are needed in cells in small quantities because they function as signaling molecules during homeostasis. However, excessive production of these species leads to oxidative stress. There is a mechanism in living cells to reduce the number of oxidative species through physiological scavenging. Numerous reactive oxygen species such assuperoxide and hydrogen peroxide are produced during oxygen metabolism. In addition, some reports showed that after the occurrence of oxidative stress, there are severe inflammatory reactions in the cells involved, which can lead to greater tissue damage and activate tissue apoptosis. Oxidative stress plays an essential role in the emergence of a number of chronic disorders such as diabetes and cancer by inducing inflammation. To protect against free radicals, living organisms have a combined antioxidant defense system including enzymatic system (such as glutathione peroxidase, superoxide dismutase, and catalase enzymes in the cytosol and cell membrane structure) and a non-enzymatic system (such as glutathione, polyphenol, carotenoids, special dipeptides, proteins containing thiol group, polyamines, ubiquinol, flavonoids, bilirubin, uric acid, vitamin E with selenium, and vitamin C) in tissues. Black cumin seeds (Nigella sativa) have been used as alternative medicine for more than 2000 years due to their multisystemic positive effects. Many active components of black cumin have been identified, including dithymoquinone, thymoquinone, nigellone, thymohydroquinone, nigilline, melanthin, nigelamine, damascenone, pinene, and p-cymene. Black cumin contains minerals such as calcium, magnesium, potassium, iron, phosphorus, cobalt, zinc, and manganese, and vitamins A, B, C, D, and E. Moreover, black cumin is rich in essential oils, proteins, alkaloids, saponins, flavonoids, and polyphenols. The black cumin has anti-inflammatory, analgesic, anthelmintic, hypocholesteremia, appetite stimulant, antidiarrheal, diuretic, antiulcer, spasmolytic and bronchodilatory, antimicrobial, antihypertensive, antidiabetic, anticancer, hepatoprotective, and renal protective activities and has antioxidant properties. This study was conducted to investigate the effects of black cumin on growth performance, antioxidant status, inflammatory responses, and biochemical and hematological changes in broilers under oxidative stress induced by hydrogen peroxide.
Materials and methods: A total of 200 one-day-old chickens (Ross 308) were reared in the form of a completely
randomized design with four treatments and five replications (10 chickens per replicate). Experimental treatments included: 1. Control group (fed with basic diet), and groups 2, 3, and 4 had levels of 50, 100, and 150 g of black seed per kg of diet. To induce oxidative stress, all birds received 1% hydrogen peroxide per liter of drinking water from 14 to 42 days of age. At 42 d, two birds were randomly selected from each cage and after blood sampling from the wing vein, were killed and dissected for liver and spleen tissue sampling. Growth performance, blood and biochemical parameters such as the number of red and white blood cells, hemoglobin, hematocrit, heterophil and lymphocyte, serum triglyceride, and cholesterol, as well as serum antioxidant parameters including the level of malondialdehyde (MDA) and the activity of antioxidant enzymes including glutathione peroxidase, superoxide dismutase, and catalase, were determined. In addition, liver enzymes present in the serum including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured. Also, to evaluate the effect of black cumin on the inflammatory response of broiler chickens under induced oxidative stress, serum interleukins including IL-10, IL-6, and TNF-α were measured.
Results and discussion: The results showed that black seed supplementation in chickens under induced oxidative stress significantly improved the growth performance, increased the activity of antioxidant enzymes, and decreased MDA in serum, liver tissue, and spleen (P<0.05). Black seed supplementation significantly decreased serum levels of inflammatory cytokines of IL-6 and TNF-α, and increased anti-inflammatory cytokine of IL-10 (P<0.05). Also, black seed supplementation did not affect red blood cells, hematocrit, or hemoglobin, but increased white blood cells, lymphocytes, and decreased blood heterophils (P<0.05). Serum levels of triglycerides, cholesterol, ALT, AST, and ALP also decreased significantly under the influence of black seed.
Conclusions: Based on the results of this experiment, it appears that black cumin (Nigella sativa) seed supplement can improve the growth performance of broiler chickens due to its antioxidant and anti-inflammatory effects.

کلیدواژه‌ها [English]

  • Antioxidant
  • Inflammatory responses
  • Broilers
  • Blood parameters
  • Black seed
Abd El‐Wahab, A., Mahmoud, R.E., Ahmed, M. F., & Salama, M. F. (2019). Effect of dietary supplementation of calcium butyrate on growth performance, carcass traits, intestinal health and pro‐inflammatory cytokines in Japanese quails. Journal of Animal Physiology and Animal Nutrition, 103(6), 1768-75. doi: 10.1111/jpn.13172
Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Demirel, H. H., Kucukkurt, I., & Zhu, K.  )2019(. Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicology Research8(2), 262-269.  doi: 10.1039/c8tx00312b
Adam, G. O., Rahman, M. M., Kim, G. B., Kang, H. S., Kim, J. S., & Kim, S. J. (2016). Hepatoprotective effects of Nigella sativa seed extract against acetaminophen-induced oxidative stress. Asian Pacific Journal of Tropical Medecine, 9(3), 221-227. doi:10.1016/j. apjtm.2016.01.039
Al-Beitawi, N. A., El-Ghousein, S. S., & Nofalm, A. H. (2009). Replacing bacitracin methylene disalicylate by crushed Nigella sativa seeds in broiler rations and its effects on growth, blood constituents and immunity. Livestock Science, 125(2), 304-307. doi: 10.1016/j.livsci.2009.03.012
Al-beitawi, N. A., Nafez., & El-Ghousein, S. S. (2008). Effect of feeding different levels of Nigella sativa seeds (black cumin) on performance, blood constituents and carcass characteristics of broiler chicks. International Journal of Poultry Science7(7), 715-721. doi:10.3923/ijps.2008.715.721
Ali, S., Mukhtar, M., & Manzoor, S. (2014). Effect of garlic, black seed and turmeric on the growth of broiler chicken. Pakistan Journal of Nutrition, 4(13), 204-210. doi: 10.3923/pjn.2014.204.210
Al-Saleh, A. (2014). Nigella seed oil as alternative to avilamycin antibiotic in broiler chicken diets. South African Journal of Animal Science, 44(3), 254-261. doi: 10.4314/sajas.v44i3.7
Al-Saleh, I., Billedo, A. G., & Inam, I. E. (2006). Level of selenium, DL-α-tocopgerol, DL-γ-tocopherol, all-Trans- retinol, thymoquinone and thymol in different brands of Nigella sativa seeds. Journal of Food Composition and Analyses, 9(2-3), 175-197.
Arab, H. A., Jamshidi, R., Rassouli, A., Shams, G., & Hassanzadeh, M. H. (2006). Generation of hydroxyl radicals during ascites experimentally. British Poultry Science, 47(2), 216-222. doi: 10.1080/00071660600611102
Azeem, T., Rehman, Z. U., Umar, S., Asif, M., Arif, M., & Rahman A. (2014). Effect of Nigella sativa on poultry health and production: a review. Scientific Letter, 2, 76-82.
Badary, O. A., Al-Shabanah, O., A., Nagi M. N., Al-Bekairi A. M., & El -Mazar M. M. (1998).  Acute and subchronic toxicity of thymoquinone in mice. Drug Development Research, 44, 56-61. doi: 10.1002/ (SICI) 1098-2299(199806/07)44:2/3%3C56
Badary, O. A., Taha, R. A., Gamal, el-Din, A. M., & Abdel-Wahab, M. H. (2003). Thymoquinone is a potent superoxide anion scavenger. Drug and Chemical Toxicology, 26, 87-98. doi: 10.1081/dct-120020404
Beynen, A. C., Katan, M. B., & Van Zutphen, L. F. M. (1987). Hypo- and hyperresponders: individual differences in the response of serum cholesterol concentration to changes in diet. Advances in Lipid Research, 22, 115-171. doi: 10.1016/b978-0-12-024922-0.50008-4
Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14, 323-328. doi:10.1002/1099- 573(200008)
Daneshyar, M., Kermanshahi, H., & Golian, A. G. (2009). Changes of biochemical parameters and enzyme activities in broiler chickens with cold-induced ascites. Poultry Science, 88, 106-110. doi: 10.3382/ps.2008-00170
Druyan, S., Shinder, D., Shlosberg, A., Cahaner, A., & Yahav, S. (2009). Physiological parameters in broiler lines divergently selected for the incidence of ascites. Poultry Science, 88, 1984-1990. doi: 10.3382/ps.2009-00116
Farhana, N. (2021). Meticulous endorsement of black seed and jambolana: A scientific review. R. S. Ahmad (Ed.), In: Herbs and Spices– New Processing Technologies. doi: 10.5772/intechopen.99225
Fathi, M., Tanha, T., & Saeedyan, S. (2022). Influence of dietary lycopene on growth performance, antioxidant status, blood parameters and mortality in broiler chicken with cold-induced ascites. Archive of Animal Nutrition, 8, 1-11. doi: 10.1080/1745039X.2022.2046451
Fathi, M., Saeedyan, S., & Kaoosim, M. (2023). Gamma-amino butyric acid (GABA) supplementation alleviates dexamethasone treatment-induced oxidative stress and inflammation response in broiler chickens. Stress, 26(1), 2185861 doi:10.1080/10253890.2023.2185861
Ghasemi, H. A., Kasani, N., & Taherpour, K. (2014). Effects of black cumin seed (Nigella sativa L.), a probiotic, a prebiotic and a synbiotic on growth performance, immune response and blood characteristics of male broilers. Livestock Science, 164, 128-134. doi: 10.1016/j.livsci.2014.03.014
Gupta, G., Iqbal, M. S., Pandey, B., & Srivastava, J. K. (2021). Differential expression of thymoquinone and its localization in different parts of Nigella sativa L. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 91(1), 13-19. doi: 10.1007/s40011-020-01190-2
Hassan, I. I., Askar, A. A., & EL Shourbagy, G. A. (2004). Influence of some medicinal plant on performance, physiological and meat quality traits of broiler chicks. Egyptian Poultry Science, 24, 247-266.
Hossain, M. M., Howlader, A. J., Islam, M. N., & Beg. M. A. (2014). Evaluation of locally available herbs and spices on physical, biochemical and economical parameters on broiler production. International Journal of Plant, Animal and Environmental Sciences, 4(1), 317-322.
Houghton, P. J., Zarka, R., de las Heras, B., & Hoult J. R. (1995). Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Medecine, 61, 33-36. doi: 10.1055/s-2006-957994
Inal me Kanbak, G., & Suna, E. (2001). Antioxidant enzymes activities and malonaldehyde levels related to aging. Clinica Chimica Acta, 305, 75-80. doi:10.1016/s0009-8981(00)00422-8
Jaganjac, M., Milkovic, L., Zarkovic, N., & Zarkovic, K. (2022). Oxidative stress and regeneration. Free Radical Biology and Medicine, 181, 154-165. doi: 10.1016/j.freeradbiomed.2022.02.004
Jiang, F., Gao, Y., Dong, C., & Xiong, S. (2018). ODC1 inhibits the inflammatory response and ROS-induced apoptosis in macrophages. Biochem Biophys Research Communication, 504(4), 734-741. doi: 10.1016/j.bbrc.2018.09.023
Kanter, M., Coskun, O., & Budancamanak, M. (2005). Hepatoprotective effects of Nigella sativa L. and Urtica dioica L. on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats. World Journal of Gastroenterology. 11, 6684-6688. doi: 10.3748%2Fwjg.v11.i42.6684
 
Luger, D., Shinder, D. Wolfenson, D., & Yahav, S. (2003). chickens: A possible role of corticosterone Erythropoiesis regulation during the development of ascites syndrome. Journal of Animal Science, 81, 784-790. doi: 10.2527/2003.813784x
Luna, A., Labaque, M. C., Zygadlo, J. A., & Marin, R. H. (2010). Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poultry Science, 89, 366-370. doi: 10.3382/ps.2009-00130
Mahbubur Rahman, M. D., & Kim, S. J. (2016). Effects of dietary Nigella sativa seed supplementation on broiler productive performance, oxidative status and qualitative characteristics of thighs meat. Italian Journal of Animal Science, 16(2), 241-247. doi: 10.1080/1828051X.2016.1159925
Mahmoud, N. N., & Mansour, A. M. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41, 283-289. doi: 10.1006/phrs.0585
Mansour, M. A., Ginawi, O. T., El-Hadiyah, T., El-Khatib, A. S., Al-Shabanah, O. A., & Al-Sawaf, H. A. (2001). Effects of volatile oil constituents of Nigella sativa on carbon tetrachloride-induced hepatotoxicity in mice: evidence for antioxidant effects of thymoquinone. Research Communications in Molecular Pathology and Pharmacology,110, 239-251.
Miraghaee, S. S., Heidary, B., Almasi, H., Shabani, A., Elahi, M., & Modaber, M. H. (2011). Effects of Nigella sativa powder (black seed) and Echinacea purpurea (L.) Moench extract on performance, some blood biochemical and hematological parameters in broiler chickens. African Journal of Biotechnology, 10(82) 19249-19254. doi: 10.5897/AJB11.2891
Nain, S., Ling, B. B., Wojnarowicz, C., Laarveld, B., Alcorn, J., & Olkowski, A. A. (2008). Biochemical factors limiting myocardial energy in a chicken genotype selected for rapid growth. Comparative Biochemistry and Physiology, Part A, 149(1), 36-43. doi: 10.1016/j.cbpa.2007.10.001
Nemati, M. H., Shahir, M. H. I., Harakinezhad, M. T. I., & Lotfalhian, H. I. (2017). Cold-Induced Ascites in Broilers: Effects of Vitamin C and Coenzyme Q10. Brazilian Journal of Poultry Science, 9(3), 537-544. doi: 10.1590/1806-9061-2017-0463
Olkowski, A. A., Duke, T., & Wojnarowicz, C. (2005). The aetiology of hypoxaemia in chickens selected for rapid growth. Comparative Biochemistry and Physiology. Part A, 141, 122-131. doi: 10.1016/j.cbpb.2005.04.011
Opeyemi, O., Ganiyu, O., Ayokunle, O., & Ademosun, O. (2022). Effect of black seeds (Nigella sativa) on inflammatory and immunomodulatory markers in Plasmodium berghei-infected mice. Journal of Food Biochemestry, 00, e14300. doi: 10.1111/jfbc.14300
Ornatowski, W., Lu, Q., Yegambaram, M., Garcia, A. E., Zemskov, E. A., Maltepe, E., Fineman, J. R., Wang, T., & Black, S. M. (2020). Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biology, 36, 101679. doi: 10.1016/j.redox.2020.101679
Pish Jang, J. (2012). The evaluation of different levels of Nigella sativa seed on performance and blood parameters of broilers. Annuls of Biological Research, 2(5), 567-572.
Pourbakhsh, H., Taghiabadi, E., Abnous, K., Hariri, A. T., Hosseini, S. M., & Hosseinzadeh, H. (2014). Effect of Nigella sativa fixed oil on ethanol toxicity in rats. Iranian Journal of Basic Medical Sciences, 17(12), 1020-1031.
Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M., Das, R., Emran, T. B., & Uddin, M. S. (2021). Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 27(1), 233. doi: 10.3390%2Fmolecules27010233
Ramazani, N., Mahd Gharebagh, F., Soleimanzadeh, A., Arslan, H. O., Keles, E., Gradinarska‐Yanakieva, D. G., & Dinç, D. A. (2023). The influence of L‐proline and fulvic acid on oxidative stress and semen quality of buffalo bull semen following cryopreservation. Veterinary Medicine and Science, 9(4), 1791-1802. doi: 10.1002/vms3.1158
Rathee, P., Chaudhary, H., Rathee, S., Rathee, D., Kumar, V., & Kohli, K. (2009). Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy) (Discontinued), 8(3), 229-235. doi: 10.2174/187152809788681029
Saleh, A. A., Ebeid, T. A., & Abudabos, A. M. (2018). Effect of dietary phytogenics (herbal mixture) supplementation on growth performance, nutrient utilization, antioxidative 12 Evidence-Based Complementary and Alternative Medicine properties, and immune response in broilers. Environmental Science and Pollution Research, 25(15), 14606-14613. doi: 10.1007/s11356-018-1685-z
Sogut, B., Celik, I., & Tuluce, Y. (2008). The effects of diet supplemented with black cumin (Nigella sativa L.) upon immune potential and antioxidant marker enzymes and lipid peroxidation in broiler chicks. Journal of Animal and Veterinary Advances, 7, 1196-1199.
 
Sohail, H. K., Ansari, J., Haq, A.U., & Ghulam, A. (2012). Black cumin seeds as phytogenic product in broiler diets and its effects on performance, blood constituents, immunity and caecal microbial population. Italian Journal of Animal Science, 11, e77. doi: 10.4081/ijas.2012.e77
Taha, A., Al-Jumaily1, T. K. H., & Al-Samrai, M. K. (2020). Effect of melatonin in adult quail males exposed to oxidative stress induced by H2O2. 1st scintific international virtual agricultural conference. iop Conf. Series: Earth and Environmental Science, 553, 012013. doi: 10.1088/1755-1315/553/1/012013
Talebi, A., Maham, M., Asri-Rezaei, S., Pournaghi, P., Khorram, M. S., & Derakhshan, A. (2021). Effects of Nigella sativa on performance, blood profiles, and antibody titer against newcastle disease in broilers. Evidence-Based Complementary and Alternative Medicine, 2070375. doi: 10.1155/2021/2070375
Talha, E., Abbas, E., & Mohamed. E. (2010). Effect of supplementation of Nigella sativa seeds to the broiler chicks' diet on the performance and carcass quality. International Journal of Agricultural Sciences, 2, 0975-3710. doi: 10.9735/0975-3710.2.2.9-13
Tuluce, Y., Ozkol, H., Sogut, B., & Celik, I. (2009). Effects of Nigella sativa L. on Lipid Peroxidation and Reduced Glutathione Levels in Erythrocytes of Broiler Chickens. Cell Membranes and Free Radical Research, 1, 5-99.
Wang, C., Liu, H., & Yang, M. (2020). RNA-seq based transcriptome analysis of endothelial differentiation of bone marrow mesenchymal stem cells. European Journal of Vascular and Endovascular Surgery, 59(5), 834-842. doi: 10.1016/j.ejvs.2019.11.003
Yavari, A., Moeini, M. M., & Hozhabri, F. (2022). Effect of black cumin and black seed on growth, weight gain, and blood parameters of fattening lambs under rangeland grazing condition. Animal Production Research10(4), 49-59. doi: 10.22124/ar.2022.16793.1536
Yildiz, F., Coban, S., & Terzi, A. (2008). Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World Journal of Gastroenterology, 14(33), 5204-5209, doi: 10.3748%2Fwjg.14.5204
Zaoui, A., Cherrah, Y., Aloui, K., Mahassine, N., Amarouch, H. & Hassar, M.  (2002). Effect of Nigella sativa fixed oil on blood homeostasis in rat. Journal of Ethnopharmacology, 79, 23-26. doi: 10.1016/s0378-8741(01)00342-7
Zargari, A. (2001). Medical plants. 2nd ed. Tehran University Press. Pp. 25-36.
Zhang, R., Ai, X., Duan, Y., Xue, M., He, W., Wang, C., Xu, T., Xu, M., Liu, B., & Li, C. (2017). Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomedicine & Pharmacotherapy, 89, 660-672. doi: 10.1016/j.biopha.2017.02.081
Ziaee, T., Moharreri, N., & Hosseinzadeh, H. (2012). Review of pharmacological and toxicological effects of Nigella sativa and its active constituents. Journal of Medicinal Plants, 42, 16-42. [In Persian]