Abd El‐Wahab, A., Mahmoud, R.E., Ahmed, M. F., & Salama, M. F. (2019). Effect of dietary supplementation of calcium butyrate on growth performance, carcass traits, intestinal health and pro‐inflammatory cytokines in Japanese quails. Journal of Animal Physiology and Animal Nutrition, 103(6), 1768-75. doi: 10.1111/jpn.13172
Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Demirel, H. H., Kucukkurt, I., & Zhu, K. )2019(. Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicology Research, 8(2), 262-269. doi: 10.1039/c8tx00312b
Adam, G. O., Rahman, M. M., Kim, G. B., Kang, H. S., Kim, J. S., & Kim, S. J. (2016). Hepatoprotective effects of Nigella sativa seed extract against acetaminophen-induced oxidative stress. Asian Pacific Journal of Tropical Medecine, 9(3), 221-227. doi:10.1016/j. apjtm.2016.01.039
Al-Beitawi, N. A., El-Ghousein, S. S., & Nofalm, A. H. (2009). Replacing bacitracin methylene disalicylate by crushed Nigella sativa seeds in broiler rations and its effects on growth, blood constituents and immunity.
Livestock Science,
125(2), 304-307.
doi: 10.1016/j.livsci.2009.03.012
Ali, S., Mukhtar, M., & Manzoor, S. (2014). Effect of garlic, black seed and turmeric on the growth of broiler chicken.
Pakistan Journal of Nutrition,
4(13), 204-210. doi:
10.3923/pjn.2014.204.210
Al-Saleh, A. (2014). Nigella seed oil as alternative to avilamycin antibiotic in broiler chicken diets. South African Journal of Animal Science, 44(3), 254-261. doi: 10.4314/sajas.v44i3.7
Al-Saleh, I., Billedo, A. G., & Inam, I. E. (2006). Level of selenium, DL-α-tocopgerol, DL-γ-tocopherol, all-Trans- retinol, thymoquinone and thymol in different brands of Nigella sativa seeds. Journal of Food Composition and Analyses, 9(2-3), 175-197.
Arab, H. A., Jamshidi, R., Rassouli, A., Shams, G., & Hassanzadeh, M. H. (2006). Generation of hydroxyl radicals during ascites experimentally. British Poultry Science, 47(2), 216-222. doi: 10.1080/00071660600611102
Azeem, T., Rehman, Z. U., Umar, S., Asif, M., Arif, M., & Rahman A. (2014). Effect of Nigella sativa on poultry health and production: a review. Scientific Letter, 2, 76-82.
Badary, O. A., Al-Shabanah, O., A., Nagi M. N., Al-Bekairi A. M., & El -Mazar M. M. (1998). Acute and subchronic toxicity of thymoquinone in mice. Drug Development Research, 44, 56-61. doi: 10.1002/ (SICI) 1098-2299(199806/07)44:2/3%3C56
Badary, O. A., Taha, R. A., Gamal, el-Din, A. M., & Abdel-Wahab, M. H. (2003). Thymoquinone is a potent superoxide anion scavenger. Drug and Chemical Toxicology, 26, 87-98. doi: 10.1081/dct-120020404
Beynen, A. C., Katan, M. B., & Van Zutphen, L. F. M. (1987). Hypo- and hyperresponders: individual differences in the response of serum cholesterol concentration to changes in diet. Advances in Lipid Research, 22, 115-171. doi: 10.1016/b978-0-12-024922-0.50008-4
Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil.
Phytotherapy Research,
14, 323-328.
doi:10.1002/1099- 573(200008)
Daneshyar, M., Kermanshahi, H., & Golian, A. G. (2009). Changes of biochemical parameters and enzyme activities in broiler chickens with cold-induced ascites. Poultry Science, 88, 106-110. doi: 10.3382/ps.2008-00170
Druyan, S., Shinder, D., Shlosberg, A., Cahaner, A., & Yahav, S. (2009). Physiological parameters in broiler lines divergently selected for the incidence of ascites. Poultry Science, 88, 1984-1990. doi: 10.3382/ps.2009-00116
Farhana, N. (2021). Meticulous endorsement of black seed and jambolana: A scientific review. R. S. Ahmad (Ed.), In: Herbs and Spices– New Processing Technologies. doi: 10.5772/intechopen.99225
Fathi, M., Tanha, T., & Saeedyan, S. (2022). Influence of dietary lycopene on growth performance, antioxidant status, blood parameters and mortality in broiler chicken with cold-induced ascites. Archive of Animal Nutrition, 8, 1-11. doi: 10.1080/1745039X.2022.2046451
Fathi, M., Saeedyan, S., & Kaoosim, M. (2023). Gamma-amino butyric acid (GABA) supplementation alleviates dexamethasone treatment-induced oxidative stress and inflammation response in broiler chickens.
Stress,
26(1), 2185861
doi:10.1080/10253890.2023.2185861
Ghasemi, H. A., Kasani, N., & Taherpour, K. (2014). Effects of black cumin seed (Nigella sativa L.), a probiotic, a prebiotic and a synbiotic on growth performance, immune response and blood characteristics of male broilers.
Livestock Science,
164, 128-134. doi:
10.1016/j.livsci.2014.03.014
Gupta, G., Iqbal, M. S., Pandey, B., & Srivastava, J. K. (2021). Differential expression of thymoquinone and its localization in different parts of Nigella sativa L. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 91(1), 13-19. doi: 10.1007/s40011-020-01190-2
Hassan, I. I., Askar, A. A., & EL Shourbagy, G. A. (2004). Influence of some medicinal plant on performance, physiological and meat quality traits of broiler chicks. Egyptian Poultry Science, 24, 247-266.
Hossain, M. M., Howlader, A. J., Islam, M. N., & Beg. M. A. (2014). Evaluation of locally available herbs and spices on physical, biochemical and economical parameters on broiler production. International Journal of Plant, Animal and Environmental Sciences, 4(1), 317-322.
Houghton, P. J., Zarka, R., de las Heras, B., & Hoult J. R. (1995). Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Medecine, 61, 33-36. doi: 10.1055/s-2006-957994
Inal me Kanbak, G., & Suna, E. (2001). Antioxidant enzymes activities and malonaldehyde levels related to aging.
Clinica Chimica Acta,
305, 75-80.
doi:10.1016/s0009-8981(00)00422-8
Jaganjac, M., Milkovic, L., Zarkovic, N., & Zarkovic, K. (2022). Oxidative stress and regeneration. Free Radical Biology and Medicine, 181, 154-165. doi: 10.1016/j.freeradbiomed.2022.02.004
Jiang, F., Gao, Y., Dong, C., & Xiong, S. (2018). ODC1 inhibits the inflammatory response and ROS-induced apoptosis in macrophages. Biochem Biophys Research Communication, 504(4), 734-741. doi: 10.1016/j.bbrc.2018.09.023
Kanter, M., Coskun, O., & Budancamanak, M. (2005). Hepatoprotective effects of Nigella sativa L. and Urtica dioica L. on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats. World Journal of Gastroenterology. 11, 6684-6688. doi: 10.3748%2Fwjg.v11.i42.6684
Luger, D., Shinder, D. Wolfenson, D., & Yahav, S. (2003). chickens: A possible role of corticosterone Erythropoiesis regulation during the development of ascites syndrome. Journal of Animal Science, 81, 784-790. doi: 10.2527/2003.813784x
Luna, A., Labaque, M. C., Zygadlo, J. A., & Marin, R. H. (2010). Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poultry Science, 89, 366-370. doi: 10.3382/ps.2009-00130
Mahbubur Rahman, M. D., & Kim, S. J. (2016). Effects of dietary Nigella sativa seed supplementation on broiler productive performance, oxidative status and qualitative characteristics of thighs meat. Italian Journal of Animal Science, 16(2), 241-247. doi: 10.1080/1828051X.2016.1159925
Mahmoud, N. N., & Mansour, A. M. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41, 283-289. doi: 10.1006/phrs.0585
Mansour, M. A., Ginawi, O. T., El-Hadiyah, T., El-Khatib, A. S., Al-Shabanah, O. A., & Al-Sawaf, H. A. (2001). Effects of volatile oil constituents of Nigella sativa on carbon tetrachloride-induced hepatotoxicity in mice: evidence for antioxidant effects of thymoquinone. Research Communications in Molecular Pathology and Pharmacology,110, 239-251.
Miraghaee, S. S., Heidary, B., Almasi, H., Shabani, A., Elahi, M., & Modaber, M. H. (2011). Effects of
Nigella sativa powder (black seed) and
Echinacea purpurea (L.) Moench extract on performance, some blood biochemical and hematological parameters in broiler chickens.
African Journal of Biotechnology,
10(82) 19249-19254. doi:
10.5897/AJB11.2891
Nain, S., Ling, B. B., Wojnarowicz, C., Laarveld, B., Alcorn, J., & Olkowski, A. A. (2008). Biochemical factors limiting myocardial energy in a chicken genotype selected for rapid growth. Comparative Biochemistry and Physiology, Part A, 149(1), 36-43. doi: 10.1016/j.cbpa.2007.10.001
Nemati, M. H., Shahir, M. H. I., Harakinezhad, M. T. I., & Lotfalhian, H. I. (2017). Cold-Induced Ascites in Broilers: Effects of Vitamin C and Coenzyme Q10.
Brazilian Journal of Poultry Science,
9(3), 537-544. doi:
10.1590/1806-9061-2017-0463
Olkowski, A. A., Duke, T., & Wojnarowicz, C. (2005). The aetiology of hypoxaemia in chickens selected for rapid growth. Comparative Biochemistry and Physiology. Part A, 141, 122-131. doi: 10.1016/j.cbpb.2005.04.011
Opeyemi, O., Ganiyu, O., Ayokunle, O., & Ademosun, O. (2022). Effect of black seeds (Nigella sativa) on inflammatory and immunomodulatory markers in Plasmodium berghei-infected mice.
Journal of Food Biochemestry,
00, e14300.
doi: 10.1111/jfbc.14300
Ornatowski, W., Lu, Q., Yegambaram, M., Garcia, A. E., Zemskov, E. A., Maltepe, E., Fineman, J. R., Wang, T., & Black, S. M. (2020). Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biology, 36, 101679. doi: 10.1016/j.redox.2020.101679
Pish Jang, J. (2012). The evaluation of different levels of Nigella sativa seed on performance and blood parameters of broilers. Annuls of Biological Research, 2(5), 567-572.
Pourbakhsh, H., Taghiabadi, E., Abnous, K., Hariri, A. T., Hosseini, S. M., & Hosseinzadeh, H. (2014). Effect of Nigella sativa fixed oil on ethanol toxicity in rats. Iranian Journal of Basic Medical Sciences, 17(12), 1020-1031.
Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M., Das, R., Emran, T. B., & Uddin, M. S. (2021). Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 27(1), 233. doi: 10.3390%2Fmolecules27010233
Ramazani, N., Mahd Gharebagh, F., Soleimanzadeh, A., Arslan, H. O., Keles, E., Gradinarska‐Yanakieva, D. G., & Dinç, D. A. (2023). The influence of L‐proline and fulvic acid on oxidative stress and semen quality of buffalo bull semen following cryopreservation. Veterinary Medicine and Science, 9(4), 1791-1802. doi: 10.1002/vms3.1158
Rathee, P., Chaudhary, H., Rathee, S., Rathee, D., Kumar, V., & Kohli, K. (2009). Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy) (Discontinued), 8(3), 229-235. doi: 10.2174/187152809788681029
Saleh, A. A., Ebeid, T. A., & Abudabos, A. M. (2018). Effect of dietary phytogenics (herbal mixture) supplementation on growth performance, nutrient utilization, antioxidative 12 Evidence-Based Complementary and Alternative Medicine properties, and immune response in broilers.
Environmental Science and Pollution Research,
25(15), 14606-14613.
doi: 10.1007/s11356-018-1685-z
Sogut, B., Celik, I., & Tuluce, Y. (2008). The effects of diet supplemented with black cumin (Nigella sativa L.) upon immune potential and antioxidant marker enzymes and lipid peroxidation in broiler chicks. Journal of Animal and Veterinary Advances, 7, 1196-1199.
Sohail, H. K., Ansari, J., Haq, A.U., & Ghulam, A. (2012). Black cumin seeds as phytogenic product in broiler diets and its effects on performance, blood constituents, immunity and caecal microbial population. Italian Journal of Animal Science, 11, e77. doi: 10.4081/ijas.2012.e77
Taha, A., Al-Jumaily1, T. K. H., & Al-Samrai, M. K. (2020). Effect of melatonin in adult quail males exposed to oxidative stress induced by H2O2. 1st scintific international virtual agricultural conference. iop Conf. Series: Earth and Environmental Science, 553, 012013. doi: 10.1088/1755-1315/553/1/012013
Talebi, A., Maham, M., Asri-Rezaei, S., Pournaghi, P., Khorram, M. S., & Derakhshan, A. (2021). Effects of Nigella sativa on performance, blood profiles, and antibody titer against newcastle disease in broilers. Evidence-Based Complementary and Alternative Medicine, 2070375. doi: 10.1155/2021/2070375
Talha, E., Abbas, E., & Mohamed. E. (2010). Effect of supplementation of Nigella sativa seeds to the broiler chicks' diet on the performance and carcass quality. International Journal of Agricultural Sciences, 2, 0975-3710. doi: 10.9735/0975-3710.2.2.9-13
Tuluce, Y., Ozkol, H., Sogut, B., & Celik, I. (2009). Effects of Nigella sativa L. on Lipid Peroxidation and Reduced Glutathione Levels in Erythrocytes of Broiler Chickens. Cell Membranes and Free Radical Research, 1, 5-99.
Wang, C., Liu, H., & Yang, M. (2020). RNA-seq based transcriptome analysis of endothelial differentiation of bone marrow mesenchymal stem cells. European Journal of Vascular and Endovascular Surgery, 59(5), 834-842. doi: 10.1016/j.ejvs.2019.11.003
Yavari, A., Moeini, M. M., & Hozhabri, F. (2022). Effect of black cumin and black seed on growth, weight gain, and blood parameters of fattening lambs under rangeland grazing condition. Animal Production Research, 10(4), 49-59. doi: 10.22124/ar.2022.16793.1536
Yildiz, F., Coban, S., & Terzi, A. (2008). Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World Journal of Gastroenterology, 14(33), 5204-5209, doi: 10.3748%2Fwjg.14.5204
Zaoui, A., Cherrah, Y., Aloui, K., Mahassine, N., Amarouch, H. & Hassar, M. (2002). Effect of Nigella sativa fixed oil on blood homeostasis in rat. Journal of Ethnopharmacology, 79, 23-26. doi: 10.1016/s0378-8741(01)00342-7
Zargari, A. (2001). Medical plants. 2nd ed. Tehran University Press. Pp. 25-36.
Zhang, R., Ai, X., Duan, Y., Xue, M., He, W., Wang, C., Xu, T., Xu, M., Liu, B., & Li, C. (2017). Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomedicine & Pharmacotherapy, 89, 660-672. doi: 10.1016/j.biopha.2017.02.081
Ziaee, T., Moharreri, N., & Hosseinzadeh, H. (2012). Review of pharmacological and toxicological effects of Nigella sativa and its active constituents. Journal of Medicinal Plants, 42, 16-42. [In Persian]