شناسایی مناطق ژنومی تحت انتخاب مثبت کنترل کننده صفات ساختاری بدن در نژادهای مختلف بز

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک

چکیده

هدف از این پژوهش، شناسایی مناطق ژنومی تحت انتخاب مرتبط با صفات ساختاری بدن در نژادهای مختلف بز بود. بدین ­منظور، از اطلاعات ژنوتیپی 728 رأس بزهای غیرخویشاوند متعلق به چهار نژاد مختلف تعیین ژنوتیپ شده با آرایه­های­50K ­ استفاده شد. جهت شناسایی نواحی ژنومی تحت انتخاب از دو آزمون آماری برآوردگر نااریب FST (تتا) و hapFLK استفاده شد. نتایج حاصل از آماره تتا منجر به شناسایی هشت ناحیه ژنومی روی کروموزوم­های شماره­ 3، 4، 7، 13، 15، 18، 20 و 29 شد. ژن­های کاندیدای شناسایی شده مرتبط با صفات ساختاری شامل ژن­های TGFBR3، CALCR، ACAD8، BCAR1 و ADAMTS6  بودند و عملکردهای متفاوتی شامل رشد و توسعه عضلات اسکلتی، طول بدن، تنظیم کانال کلسیمی، هموستازی الیاف ماهیچه­ای، میزان خوراک مصرفی، ساخت پروتئین و اندازه سلول ماهیچه­ای داشتند. به­علاوه، بررسی QTLهای گزارش شده در مناطق انتخابی و اورتولوگوس گاوی، قرار داشتن QTLهای مرتبط با افزایش وزن بدن، عرض کپل و وزن متابولیکی بدن را نشان داد. همچنین، نتایج حاصل از آماره hapFLK در این پژوهش، منجر به شناسایی پنج ناحیه ژنومی روی کروموزوم­های شماره 1، 5، 6، 13 و 30 شد. ژن­های کاندیدای شناسایی شده در این مناطق ژنومی شامل FNDC3B، STAB2 و CCNY بودند و عملکردهای متفاوتی در تکثیر فیبروبلاست­ها و تمایز سلول­های استخوانی داشتند. ژن­هایی که در نواحی ژنومی شناسایی شدند، می­توانند بر اساس عملکرد به­عنوان کاندیداهای تحت انتخاب مثبت مطرح باشند. در هر حال، نیاز به بررسی­های پیوستگی و عملکردی بیشتری جهت شناسایی عملکرد ژن­ها وجود دارد. استفاده از یافته­های این تحقیق می­تواند باعث تسریع در پیشرفت ژنتیکی برنامه­های اصلاح نژادی بز شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of genomic regions under positive selection that control the type traits in different goat breeds

نویسنده [English]

  • H. Mohammadi
Assistant Professor, Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, University of Arak, Arak, Iran
چکیده [English]

Introduction: Molecular markers that reveal polymorphisms at the DNA level now play a key role in animal genetics. However, the selection of molecular markers is crucial depending on the purpose, viz. this depends on different molecular biology techniques and their effects. Over the last decade, interest in identifying genes or genomic regions targeted by selection has grown. Identifying selection signatures can provide valuable insights into the genes or genomic regions that are or have been under selection pressure, which in turn leads to a better understanding of genotype-phenotype relationships. Type characteristics are important for breed identification and classification and are also positively correlated with body weight. This study aimed to identify effective genes and genomic regions under positive selection signatures in different goat breeds using selection signature methods. For this purpose, FST and hapFLK analyses were performed using the genome-wide single nucleotide polymorphisms (SNPs).
Materials and methods: In this research, the information from 728 goats of four different breeds was used to identify genomic regions associated with type traits. To determine the genotype of the samples, Illumina caprine Bead Chip 50K was used. The genomic information of goat breeds was extracted from the Figshare database. Quality control was performed using the Plink software. The markers or individuals were excluded from further study based on the following criteria: unknown chromosomal or physical location, call rate <0.95, missing genotype frequency >0.05, minor allele frequency (MAF) <0.05, and a P-value for Hardy-Weinberg equilibrium test less than 10-3. After quality control, 36861 SNPs from goat SNP chip 50K from 691 goats remained for further analysis. To identify the signatures of selection, two statistical methods of FST and hapFLK were used under the software packages FST and hapFLK, respectively. Candidate genes were identified using the Plink v1.9 software and the Illumina gene list in R by SNPs located in the highest  FST and hapFLK values. In addition, the latest published version of the animal genome database was used to define QTLs associated with economically important traits at identified loci. The GeneCards (http://www.genecards.org) and UniProtKB (http://www.uniprot.org) databases were also used to interpret the function of the obtained genes.
Results and discussion: The FST and hapFLK statistics were used to identify genomic regions subjected to positive selection associated with type traits in four goat breeds. Using the FST approach, we identified eight genomic regions on chromosomes 3, 4, 7, 13, 15, 18, 20, and 29. The identified candidate genes associated with type traits in these genomic regions included TGFBR3, CALCR, ACAD8, BCAR1, and ADAMTS6. Some of the genes located in the identified selection regions were directly and indirectly related to cell differentiation and proliferation, skeletal muscle growth and development, body length, calcium channel regulation, muscle fiber homeostasis, protein synthesis, and muscle cell size. Some of these genes in the selected regions were consistent with previous studies. The results of the reported QTLs in the selected regions and the bovine orthologous regions were QTLs located in the identified regions that were related to average daily gain, body weight, trunk width, and metabolic body weight. Furthermore, the results of the hapFLK statistics in this research led to the identification of five genomic regions on chromosomes 1, 5, 6, 13, and 30, and they were in the 99.9th percentile of all hapFLK values. The identified candidate genes associated with the type trait in these genomic regions included FNDC3B, STAB2, and CCNY. They were found to have different functions in fibroblast proliferation and bone cell differentiation.
Conclusions: Various/different genes that emerged in studied regions can be considered candidates for selection based on their function. By the way, various genes found in these regions can be considered candidates for selection based on their function. Most of the selected genes were found to be consistent with some previous studies and to be involved in production traits. A survey of extracted QTLs also found that these QTLs are involved in some economically important traits in goats, such as average daily gain and body weight in yearlings. However, further association and functional studies are required to demonstrate the importance of the genes obtained from association analyses. Leveraging these findings can accelerate genetic progress in breeding programs and help understand the genetic mechanism that controls these traits.
Material and Methods: In this research, to identify genomic regions under selection associated with type traits were used the information obtained from 728 goats of different breeds including Beetal, Daira Deen Panah, Barbari, Teddi, In order to determine the genotype of the samples, Illumina caprine Bead Chip 50K were used. The genomic information of goat breeds was extracted from the figshare database. Quality control was conducted using the Plink software. The markers or individuals were excluded from the further study based on the following criteria: unknown chromosomal or physical location, call rate <0.95, missing genotype frequency >0.05, minor allele frequency (MAF) < 0.05, and a P-value for Hardy–Weinberg equilibrium test less than 10-3. After quality control, 36,861 SNPs from Goat SNP chip 50K on 691 goats were remained for the future analysis. To identify the signatures of selection, two statistical methods of FST and hapFLK were used under FST and hapFLK software packages, respectively. Candidate genes were identified by SNPs located at 1% upper range of FST and hapFLK using Plink v1.9 software and the gene list of Illumina in R. Additionally, the latest published version of Animal genome database was used for defining QTLs associated with economic important traits in identified locations. GeneCards (http://www.genecards.org) and UniProtKB (http://www.uniprot.org) databases were also used to interpret the function of the obtained genes.
Results and Discussion: We used the FST and hapFLK statistics to identify genomic regions that have been under positive selection associated with type traits in four goat breeds. Using FST approach, we identified eight genomic regions on chromosomes 3, 4, 7, 13, 15, 18, 20, and 29 chromosome. The identified candidate genes associated with type trait in these genomic regions included TGFBR3, CALCR, ACAD8, BCAR1, ADAMTS6. Some of the genes located in identified regions under selection were associated with the cell differentiation and proliferation, skeletal muscle growth and development, body length, calcium channel regulation, muscle fiber homeostasis, protein synthesis and muscle cell size which can be directly and indirectly related to the trait of the type traits. Some of these genes in the selected regions were consistent with previous studies. Result of the reported QTLs in the selected regions and the orthologous regions of cattle were located in the identified regions, QTLs related to average daily gain, body weight, rump width and body metabolic weight. Also, the results of hapFLK statistics in this research led to the identification of five genomic regions on chromosomes 1, 5, 6, 13, and 30, and they were in the 99.9 percentile of all hapFLK values. The identified candidate genes associated with the type trait in these genomic regions included FNDC3B, STAB2 and CCNY. It was determined that they had different functions in proliferation of fibroblasts and differentiation of bone cells. Result of the reported QTLs in the selected regions and orthologous cattle in the identified regions, QTLs related to metabolic body weight were located.
Conclusion: various genes that were founded within these regions can be considered as candidates under selection based on function. Most of the genes under selection were found are consistent with some previous studies and to be involved in production traits. Also, survey on extracted QTLs was shown that these QTLs involved in some economical important traits in goat such as average daily gain and body weight in yearling. However, it will be necessary to carry out more association and functional studies to demonstrate the implication of these genes. However, it will be necessary to carry out more association and functional studies to demonstrate the implication of these genes and survey on QTLs related to selected regions. However, will be necessary to carry out more association and functional studies to demonstrate the implication of genes obtained from association analyses. Using these findings can accelerate the genetic progress in the breeding programs and can be used to understand the genetic mechanism controlling this trait.

کلیدواژه‌ها [English]

  • Selection
  • Goat
  • Candidate gene
  • Type traits
  • Genomic regions
Adams, J. M., Pei, H., Sandoval, D. A., Seeley, R. J., Chang, R. B., & Liberles, S. D. (2018). Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor-expressing glutamatergic neurons. Diabetes, 67, 1538-1548. doi: 10.2337/db17-1385
Bertolini, F., Servin, B., Servin, B., Talenti, A., Rochat, E., & Kim, E. S. (2018). Signatures of selection and environmental adaptation across the goat genome post-domestication. Genetic Selection Evolution, 50, 1-24. doi: 10.1186/s12711-018-0421-y
Bonhomme, M., Chevalet, C., Servin, B., Boitard, S., Abdallah, J., Blott, S., & SanCristobal, M. (2010). Detecting selection in population trees: the Lewontin and Krakauer test extended. Genetics, 186(1), 241-262. doi: 10.1534/genetics.104.117275
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-Generation PLINK: Rising to the challenge of Larger and Richer Datasets. Gigascience, 4, 7. doi: 10.1186/s13742-015-0047-8
Chen, Q., Wang, Z., Sun, J., Huang, Y., Hanif, Q., Liao, Y., & Lei, C. (2020). Identification of Genomic Characteristics and Selective Signals in a Du'an Goat Flock. Animals, 10(6), 994. doi: 10.3390/ani10060994
Easa, A. A., Selionova, M., Aibazov, M., Mamontova, T., Sermyagin, A., Belous, A., Abdelmanova, A., Deniskova, T., & Zinovieva N. (2022). Identification of Genomic Regions and Candidate Genes Associated with Body Weight and Body Conformation Traits in Karachai Goats. Genes, 13(10), 1773. doi: 10.3390/genes13101773
Fang, X., Gu, B., Chen, M., Sun, R., Zhang, J., Zhao, L., & Zhao, Y. (2023). Genome-wide association study of the reproductive traits of the Dazu black goat (Capra hircus) using whole-genome resequencing. Genes, 14, 1960. doi: 10.3390/genes14101960
Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M., & Servin, B. (2013). Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics, 193(3), 929-941. doi: 10.1534/genetics.112.147231
Gebreselase, H. B., Nigussie, H., Wang, C., & Luo, C. (2024). Genetic diversity, population structure and selection signature in Begait goats revealed by whole-genome sequencing. Animals, 14, 307. doi: 10.3390/ani14020307
Gouveia, J. J. D. S., Silva, M. V. G. B. D., Paiva, S. R., & Oliveira, S. M. P. D. (2014). Identification of selection signatures in livestock species. Genetic Molecular Biology, 37(2), 330-342. doi: 10.1590/s1415-47572014000300004
Haldar, A., Pal, P., Datta, M., Paul, R., Pal, S. K., Majumdar, D., Biswas, C. K., & Pan, S. (2014). Prolificacy and its relationship with age, body weight, parity, previous litter size and body linear type traits in meat-type goats. Asian-Australasian Journal of Animal Science, 27, 628-634. doi: 10.5713/ajas.2013.13658
Han, B., Wang, H., Zhang, J., & Tian, J. (2020). FNDC3B is associated with ER stress and poor prognosis in cervical cancer. Oncology Letters, 19(1), 406-414. doi: 10.3892/ol.2019.11098
Huang, C., Zhao, Q., Chen, Q., Su, Y., Ma, Y., Ye, S., & Zhao, Q. (2024). Runs of homozygosity detection and selection signature analysis for local goat breeds in Yunnan, China. Genes, 15, 313. doi: 10.3390/genes15030313
Islam, R., Li, Y., Liu, X., Berihulay, H., Abied, A., & Gebreselassie, G. (2019). Genome-wide runs of homozygosity, effective population size, and detection of positive selection signatures in six Chinese goat breeds. Genes, 10, 938. doi: 10.3390/genes10110938
Javanrouh, A., Vaez Torshizi, R., Masoudi, A. A., & Ehsani, A. (2017). Genome wide association study (GWAS) for body composition traits in a F2 population crosses of Arian broiler line and Azerbaijan native chicken. Animal Sciences Journal, 30(116), 231-246. doi: 10.22092/asj.2017.110171.1434 [In Persian]
Lu, D., Miller, S., Sargolzaei, M., Kelly, M., Vander, V. G., Caldwell, T., Wang, Z., Plastow, G., & Moore, S. (2013). Genome-wide association analyses for growth and feed efficiency traits in beef cattle. Journal of Animal Science, 91(8), 3612-3633. doi: 10.1186/s12864-017-3754-y
Moaeen-ud-Din, M., Danish Muner, R., & Khan, M. S. (2022). Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Scientific Reports, 12, 9891. doi: 10.1038/s41598-022-14018-y
Mohammadi, H., & Shamsollahi, M. (2023). Identification of selective signatures associated with gastrointestinal atresia in Holstein calves. Animal Production Research, 12(2), 57-69. doi: 10.22124/AR.2023.23703.1748 [In Persian]
Muner, R. D., Moaeen-Ud-Din, M., Bilal, G., Waheed, H. M., Khan, M. S., Asad, M. J., & Kuthu, Z. H. (2021). Exploring genetic diversity and population structure of Punjab goat breeds using Illumina 50 K SNP bead chip. Tropical Animal Health and Production, 53(3), 368. doi: 10.1007/s11250-021-02825-w
Ncube, K. T., Dzomba, E. F., Hadebe, K., Soma, P., Frylinck, L., & Muchadeyi, F. C. (2022). Carcass quality profiles and associated genomic regions of south African goat populations investigated using goat snp50k genotypes. Animals, 12, 364. doi: 10.3390/ani12030364
Peng, W., Zhang, Y., & Gao, L. (2024). Selection signatures and landscape genomics analysis to reveal climate adaptation of goat breeds. BMC Genomics, 25, 420. doi: 10.1186/s12864-024-10334-x
Pouraskari, M., Harakinezhad, T., & Zandi, M. B. (2019). Study of SNPs associated with carcass fat in Afshari, Moghani and Qezel sheep breeds. Animal Sciences Journal, 32(123), 247-258.  doi: 10.22092/asj.2018.121945.1704 [In Persian]
Rostamzadeh Mahdabi, E., Esmailizadeh, A., Ayatollahi Mehrgardi, A., & Asadi Fozi, M. (2021). A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genetic Selection Evolution, 53(1), 72. doi: 10.1186/s12711-021-00664-9
Sallam, A. M., Reyer, H., & Wimmers, K. (2023). Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds. BMC Genomics, 24, 573. doi: 10.1186/s12864-023-09679-6
Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., & Singh R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. doi: 10.1016/j.ygeno.2021.02.009
Saif, R., Henkel, J., Mahmood, T., Ejaz, A., Ahmad, F., & Zia, S. (2020). Detection of whole genome selection signatures of Pakistani Teddy goat. Molecular Biology Reports, 48(11), 7273-7280. doi: 10.1007/s11033-021-06726-x
Saif, R., Mahmood, T., Zia, S., Henkel, J., & Ejaz, A. (2023). Genomic selection pressure discovery using site-frequency spectrum and reduced local variability statistics in Pakistani Dera-Din-Panah goat. Tropical Animal Health and Production, 55(5), 331. doi: 10.1007/s11250-023-03758-2
Snelling, W. M., Allan, M. F., Keele, J. W., Kuehn, L. A., McDaneld, T., Smith, T. P., Sonstegard, T. S., Thallman, R. M., & Bennett, G. L. (2010). Genome-wide association study of growth in crossbred beef cattle. Journal of Animal Science, 88(3), 837-848. doi: 10.2527/jas.2009-2257
Sun, X., Guo, J., Li, L., Zhong, T., Wang, L., Zhan, S., Lu, J., Wang, D., Dai, D., & Liu, G. E. (2022). Genetic diversity and selection signatures in Jianchang black goats revealed by whole-genome sequencing data. Animals, 12, 2365. doi: 10.3390/ani12182365
Sun, X., Niu, Q., Jiang, J., Wang, G., Zhou, P., Li, J., Chen, C., Liu, L., Xu, L., & Ren H. (2023). identifying candidate genes for litter size and three morphological traits in Youzhou dark goats based on genome-wide SNP markers. Genes, 14, 1183. doi: 10.3390/genes14061183
Teissier, M., Brito, L. F., Schenkel, F. S., Bruni, G., Fresi, P., Bapst, B., Robert-Granie, C., & Larroque, H. (2023). Genetic parameters for milk production and type traits in North American and European Alpine and Saanen dairy goat populations. JDS Communications, 5(1), 28-32. doi: 10.3168/jdsc.2023-0389
Valencia-Posadas, M., Lechuga-Arana, A.A., Ávila-Ramos, F., Shepard, L., & Montaldo, H. H. (2022). Genetic parameters for somatic cell score, milk yield and type traits in Nigerian Dwarf goats. Animal Bioscience, 35(3), 377-384. doi: 10.5713/ab.21.0143
Waineina, R. W., Okeno, T. O., Ilatsia, E. D., & Ngeno, K. (2022). Selection signature analyses revealed genes associated with adaptation, production, and reproduction in selected goat breeds in Kenya. Frontiers in Genetics, 13, 858923. doi: 10.3389/fgene.2022.858923
Walugembe, M., Bertolini, F., & Dematawewa, C. M. B. (2019). Detection of selection signatures among Brazilian, Sri Lankan, and Egyptian chicken populations under different environmental conditions. Frontiers in Genetics, 9, 737. doi: 10.3389/fgene.2018.00737
Wang, Z., Zhang, H., Yang, H., Wang, S., Rong, E., Pei, W., Li, H., & Wang, N., 2014. Genome-wide association study for wool production traits in a Chinese Merino sheep population. PLoS One, 9, e107101. doi: 10.1371/journal.pone.0107101
Wang, X., Liu, J., Zhou, G., Guo, J., Yan, H., Niu, Y., Li, Y., Yuan, C., Geng, R., Lan, X., An, X., Tian, X., Zhou, H., Song, J., Jiang, Y., & Chen, Y. (2016). Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Scientific Reports, 6, 38932. doi: 10.1038/srep38932
Wang, J. J., Zhang, T., Chen, Q. M., Zhang, R. Q., Li, L., Cheng, S. F., Shen, W., & Lei, C. Z. (2020). Genomic signatures of selection associated with litter size trait in Jining gray goat. Frontiers in Genetics, 11, 286. doi: 10.3389/fgene.2020.00286
Wang, K., Liu, X., Qi, T., Hui, Y., Yan, H., Qu, L., Lan, X., & Pan, C. (2021). Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics, 113(1 Pt 1), 142-150. doi: 10.1016/j.ygeno.2020.11.024
Wang, P., Li, X., Zhu, Y., Wei, J., Zhang, C., Kong, Q., Nie, X., Zhang, Q., & Wang, Z. (2022). Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows. Frontiers in Veterinary Science, 9, 932034. doi: 10.3389/fvets.2022.932034
Wu, X., Fang, M., Liu, L., Wang, S., Liu, J., Ding, X., Zhang, S., Zhang, Q., Zhang, Y., Qiao, L., Lund, M.S., Su, G., & Sun, D. (2013). Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genomics, 14, 897. doi: 10.1186/1471-2164-14-897
Yang, R., Zhou, D., Tan, X., Zhao, Z., Lv, Y., Tian, X., Ren, L., Wang, Y., Li, J., & Zhao, Y. (2024). Genome-wide association study of body conformation traits in Tashi goats (Capra hircus). Animals, 14, 1145. doi: 10.3390/ani14081145
Yuan, J., Sun, C., Dou, T., Yi, G., Qu, L., & Quan, L. (2015). Identification of promising mutants associated with egg production traits revealed by genome-wide association study. PLoS One, 10(10), e0140615. doi: 10.1371/journal.pone.0140615
Zhang, Y. E. (2017). Non-Smad signaling pathways of the TGF- family. Cold Spring Harbor Perspectives in Biology, 9, 56-71. doi: 10.1101/cshperspect.a022129
Zhang, L., Wang, F., Gao, G., Yan, X., Liu, H., Liu, Z., Wang, Z., He, L., Lv, Q., Wang, Z., Wang, R., Zhang, Y., Li, J., & Su, R. (2021). Genome-wide association study of body weight traits in Inner Mongolia cashmere goats. Frontiers in Veterinary Science, 8, 752746. doi: 10.3389/fvets.2021.752746
Zhao, F., Deng, T., Shi, L., Wang, W., Zhang, Q., Du, L., & Wang, L. (2020). Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types. Animals, 10(5), 773. doi: 10.3390/ani10050773