مقایسه دقت شبکه عصبی مصنوعی و مدل رگرسیون خطی در تخمین وزن بدن شترهای یک کوهانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم دامی ، دانشکده کشاورزی، دانشگاه بیرجند

2 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند

3 استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند

4 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند

چکیده

وزنکشی، نقش مهمی در مدیریت پرورش شتر، برای تنظیم احتیاجات غذایی، بررسی رشد و ارزیابی سالیانه دامها دارد. در مدل­های ریاضی، با توجه به همبستگی بالای اندازه­گیری­های ظاهری بدن با وزن، از آن­ها برای تخمین وزن‌ بدن استفاده‌ می­شود. هدف از این پژوهش، مقایسه دقت استفاده از مدل رگرسیون خطی چندگانه به­روش گام به گام و شبکه عصبی مصنوعی در تخمین وزن بدن شترهای یک کوهانه با استفاده از ابعاد بدن و بسته  nnetدر نرم­افزار R بود. در این پژوهش، از ابعاد بدنی 177 نفر شتر یک کوهانه (در چهار گروه 1- ماده بالغ بلوچی، 2- ماده بالغ پاکستانی، 3- ماده بلوچی و پاکستانی با سن کمتر از دو سال، و 4- کل جمعیت شترها) ایستگاه پرورش شتر خراسان جنوبی استفاده شد. ابعاد بدن شامل طول گردن، دور گردن، طول دست، طول پا، ارتفاع شانه تا زمین، ارتفاع کوهان تا زمین، ارتفاع کپل تا زمین، دور سینه، عرض سینه، دور شکم، عرض لگن، طول دم، ارتفاع پستان و دور پستان بودند. مدل مناسب بر اساس معیارهای نکویی برازش شامل ضریب تبیین، ریشه مجذور میانگین مربعات خطا، میانگین مطلق خطا و میانگین درصد مطلق خطا انتخاب شد. نتایج تحلیل رگرسیون خطی چندگانه در کل جمعیت شترهای مورد ارزیابی نشان داد ابعاد بدنی ارتفاع شانه تا زمین، دور سینه، دور شکم، دور گردن و طول دست، اثر معنی­داری بر وزن بدن داشت. در تحلیل شبکه عصبی مصنوعی، اندازه­های دور شکم، دور سینه و ارتفاع شانه با زمین، با اهمیت­ترین متغیرها در برآورد وزن بدن شترهای کل جمعیت بودند. مدل‌های رگرسیون خطی چندگانه و شبکه عصبی مصنوعی، دارای دقت قابل قبول در برآورد وزن بودند. با این حال، مدل شبکه عصبی مصنوعی در مقایسه با مدل رگرسیون چندگانه، ضریب تبیین بالاتر و خطای کمتری در برآورد وزن شترها داشت و می‌تواند برای برآورد وزن بدن استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the accuracy of an artificial neural network and a linear regression model for estimating the body weight of one-humped camels

نویسندگان [English]

  • T. Radin 1
  • H. Naeeimipour Younesi 2
  • S. H. Farhangfar 3
  • M. B. Montazer Torbati 4
1 Former MSc Student, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
2 Assistant Professor, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
3 Professor, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
4 Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
چکیده [English]

Introduction: In many countries of the world, the camel has played an important role in the lives of people in arid and semi-arid regions in terms of providing milk and meat products. Based on phenotypic characteristics, the camel has been adapted to the deserts from physiological, anatomical, and behavioral points of view. Due to limited water resources, the south Khorasan province of Iran has not been an appropriate geographical region for a great number of agricultural products. Weighing plays an important role in the management of camel breeding to adjust the nutritional needs and also the annual evaluation of the animals. One of the main challenges of camel breeding is the difficulty of recording and the lack of records due to the wild nature and also the large size, especially in adults. Due to the many difficulties and risks, camel breeders usually use various potential alternative tools such as apparent estimation or weighing tape to estimate the weight of camels at different ages. For farm animals, significant correlations between body measurements and body weight can be used as a tool to estimate the weight of animals through a mathematical equation. The main objective of this study was to compare the accuracy of artificial neural network (ANN) and multiple linear regression model (MLR) in estimating the body weight of a humped camel.
Materials and methods: In the present study, the data of a total number of 177 one-humped camels in four groups  (including 1. 63 adult female Pakistani camels aged between 9 and 12 years, 2. 21 adult female Baluchi camels aged between 9 and 12 years, 3. 93 male and female camels less than 2 years of age of Pakistani and Baluchi breeds, and 4. total camels) collected at the South Khorasan camel breeding station in 2019 were used. Morphological characteristics of camels include: neck length, neck girth, hand length, foot length, shoulder height to the ground, hump height to the ground, hip height to the ground, chest girth, chest width, abdomen girth, hip width, tail length, breast height, and breast girth were measured. After measuring the body dimensions, the evaluated camels were weighed using a 1000 kg digital scale. To estimate the weight of camels from their body dimensions, the data were analyzed using the MLR model and ANN with the nnet package in R software. For ANN analysis, 80% of the data were considered for network training and 20% for testing. The accuracy of MLR and ANN for camel body weight estimation was compared using the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
Results and discussion: The results of the MLR model showed that body dimensions of shoulder height to the ground, chest girth, abdominal girth, neck girth, and hand length had a significant effect on body weight (P<0.05). In the ANN model, chest girth, abdominal girth, and shoulder height to the ground were the most important variables in estimating the body weight of camels of the whole population. The MLR and ANN models had acceptable accuracy in weight estimation. However, compared to the MLR model, the ANN model had a higher R2 and a lower error in estimating the weight of camels. In the first group, R2 and RMSE were found to be 0.996 and 6.852, respectively, for ANN while the corresponding values were 0.979 and 22.955, respectively, for MLR.  In the second group, R2 and RMSE were found to be 0.995 and 3.525, respectively, for ANN while the corresponding values were 0.989 and 5.377, respectively, for MLR.  In the third group, R2 and RMSE were found to be 0.896 and 13.959, respectively, for ANN while the corresponding values were 0.849 and 17.549, respectively, for MLR. In the fourth group, R2 and RMSE were found to be 0.929 and 20.248, respectively, for ANN while the corresponding values were 0.903 and 38.505, respectively, for MLR. The results showed that ANN is more accurate compared to MLR in predicting the body weight of camels. 
Conclusions: In terms of goodness of fit (including R2 and RMSE), the results of the present research suggest that both MLR and ANN methods have high acceptable accuracy for predicting body weight in camels. ANN was more suitable compared to MLR, suggesting that it could be used to predict camel body weight. Furthermore, grouping the camels by age and breed could also lead to higher precision and lower prediction error.

کلیدواژه‌ها [English]

  • Morphological characteristics
  • Linear regression
  • Artificial neural network
  • Camel
  • Body weight
Abegaz, S., & Awgichew, K. (2009). Technical bulletin no. 23. Estimation of weight and age of sheep and goat. Ethiopia sheep and goat productivity improvement program. ESGPIP, Ethiopia.
Asadzadeh, N., Bitaraf Sani, M., Shams Davodly, E., Zare Harofte, J., Khojestehkey, M., Abbaasi, S., & Shafie Naderi, A. (2021). Body weight prediction of dromedary camels using the machine learning models. Iranian Journal of Applied Animal Science11(3), 605-614.
Atta, M., & el-Khidir, O. A. (2004). Use of heart girth, wither height and scapuloischial length for prediction of love weight of Nilotic sheep. Small Ruminant Research, 55(1), 233-237. doi: 10.1016/j.smallrumres.2004.01.005
Babinec, T. (1997). Neural networks and statistical models. In: Sawtooth Software Conference.
Bahashwan, S., Alrawas, A. S., Alfadli, S., & Johnson, E. S. (2016). Dhofari cattle growth curve prediction by different nonlinear model functions. Livestock Research for Rural Developmen, 27(12).
Bahreini Behzadi, M. R. (2015). Comparison of different growth models and artificial neural network to fit the growth curve of Lori-Bakhtiari sheep. Journal of Ruminant Research, 3, 125-148. [In Persian]
Bahreini Behzadi, M. R. (2021). The use of artificial neural networks to describe growth of Iranian one humped camel (Camelus dromedarius). Applied Animal Science Research Journal10(39), 83-88. doi: 10.22092/aasrj.2021.124939 [In Persian]
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning. Springer, New York.
Bitaraf-Sani, M., Khojastekey, M., Nobari, K., Mirjalili, A. B., Naderi, A. S., & Harafte, J. Z. (2023). Comparison of principal component analysis method and multiple regressions in estimating the weight of fattening camels. Journal of Ruminant Research, 11(2), 37-48. doi: 10.22069/EJRR.2023.20394.1855 [In Persian]
Borah, S., Hines, E. L., & Bhuyan, M. (2007). Wavelet transform based image texture analysis for size estimation applied to the sorting of tea granules. Journal of Food Engineering79(2), 629-639. doi: 10.1016/j.jfoodeng.2006.02.022
Cannas, A., & Boe, F. (2003). Prediction of the relationship between body weight and body condition score in sheep. Italian Journal of Animal Science2, 527-529. doi: 10.4081/ijas.2003.11676065
Çelik, Ş. (2021). Modeling and estimation of camel population in Turkey with time series analysis and Artificial Neural Networks. International Journal of Research in Engineering and Science9(5), 38-44. doi: 10.5281/zenodo.10651136
Derks, E. P. P. A., Pastor, M. S., & Buydens, L. M. C. (1995). Robustness analysis of radial base function and multi-layered feed-forward neural network models. Chemometrics and Intelligent Laboratory Systems, 28(1), 49-60. doi: 10.1016/0169-7439(95)80039-C
Ehsaninia, J., Faye, B., Ghavi Hossein-Zadeh, N. (2020). Phenotypic diversity of camel ecotypes (Camelus dromedarius) in the south region of Kerman province of Iran. Iranian Journal of Applied Animal Science, 10(4), 165-172.
Francis, J., Sibanda, S., & Kristensen, T. (2002). Estimating body weight of cattle using linear body measurements. Zimbabwe Veterinary Journal33(1), 15-21. doi: 10.4314/zvj. v33i1.5297
Garson, G. D. (1991). Interpreting neural-network connection weights. AI expert6(4), 46-51.
Grzesiak, W., Lacroix, R., Wójcik, J., & Blaszczyk, P. (2003). A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records. Canadian Journal of Animal Science83(2), 307-310. doi: 10.4141/A02-002
Iqbal, Z. M., Javed, K., Abdullah, M., Ahmad, N., Ali, A., Khalique, A., Aslam, N., & Younas, U. (2014). Estimation of body weight from different morphometric measurements in Kajli lambs. Journal of Animal and Plant Science24, 700-703. doi: 10.13140/2.1.4283.9687
Kadim, I. T., Mahgoub, O., & Purchas, R. W. (2008). A review of the growth, and of the carcass and meat quality characteristics of the one-humped camel (Camelus dromedaries). Meat Science80(3), 555-569. doi: 10.1016/j.meatsci.2008.02.010
Khojastehkey, M., Kalantar, M., Yeganeparast, M., Asadzadeh, N., & Souri, N. (2022). Comparison of artificial neural network accuracy and linear regression model in estimating the weight of dromedary camel using body measurements. Animal Sciences Journal35(136), 3-16. doi: 10.22092/asj.2022.356403.2186 [In Persian]
Köhler-Rollefson, I., Mundy, P., & Mathias, E. (2001). A field manual of camel diseases: traditional and modern health care for the dromedary. ITDG publishing. Breeding and Improvement of Livestock1(2), 73-82.
Mahmud, M. A., Shaba, P., & Zubairu, U. Y. (2014). Live body weight estimation in small ruminants-a review. Global Journal of Animal Scientific Research2(2), 102-108.
Meghelli, I., Kaouadji, Z., Yilmaz, O., Cemal, I., Karaca, O., & Gaouar, S. B. S. (2020). Morphometric characterization and estimating body weight of two Algerian camel breeds using morphometric measurements. Tropical Animal Health and Production52, 2505-2512. doi: 10.1007/s11250-020-02204-x
Menhaj, M. B. (1998). Neural Networks Basis (Calculation Intelligence). Second Print. Tehran: Amirkabir Industrial University. [In Persian]
Moradi Shahrbabak, H., Moradi Shahrbabak, M., Miraei Ashtiani, S. R., & Moghbeli, H. (2015). Determination of camel weight regression equation using biometrical traits of Yazdi camels breed by multivariate linear regression analysis based on the principal components analysis. Animal Sciences Journal28(108), 25-34. doi: 10.22092/asj.2015.103709 [In Persian]
Norouzian, M. A., & Vakili Alavijeh, M. (2016). Comparison of artificial neural network and multiple regression analysis for prediction of fat tail weight of sheep. Iranian Journal of Applied Animal Science6(4), 895-900.
Pereira, M. M., Mansano, C. F. M., Silva, E. P. D., & Stéfani, M. V. D. (2014). Growth in weight and of some tissues in the bullfrog: fitting nonlinear models during the fattening phase. Ciência e Agrotecnologia38, 598-606. doi: 10.1590/S1413-70542014000600009
Ripley, B., Venables, W., & Ripley, M. B. (2016). R Package ‘nnet’. Available at: https://cran.r-project.org/web/packages/nnet/index.html
Ruchay, A., Kober, V., Dorofeev, K., Kolpakov, V., Dzhulamanov, K., Kalschikov, V., & Guo, H. (2022). Comparative analysis of machine learning algorithms for predicting live weight of Hereford cows. Computers and Electronics in Agriculture195, 106837. doi: 10.1016/j.compag.2022.106837
Salau, J., Haas, J. H., Junge, W., Bauer, U., Harms, J., & Bieletzki, S. (2014). Feasibility of automated body trait determination using the SR4K time-of-flight camera in cow barns. SpringerPlus3, 1-16. doi: 10.1186/2193-1801-3-225
Slósarz, P., Stanisz, M., Boniecki, P., Przybylak, A., Lisiak, D., & Ludwiczak, A. (2011). Artificial neural network analysis of ultrasound image for the estimation of intramuscular fat content in lamb muscle. African Journal of Biotechnology10(55), 11792. doi: 10.5897/AJB11.197
Tsegaye, D., Belay, B., & Haile, A. (2013). Linear body measurements as predictor of body weight in hararghe highland goats under farmer’s environment: Ethiopia. Global Veterinaria11(5), 649-656. doi: 10.5829/idosi.gv.2013.11.5.76135
Zakizadeh, S., Saghi, D. A., & Memarian, H. (2020). Mathematical description of growth curve in Kurdish sheep using artificial neural network and its comparison with non-linear models. Animal Production Research9(1), 45-59. doi: 10.22124/ar.2020.13212 [In Persian]