مطالعه مقایسه ای پروفایل بیان ژن و بیان اختصاصی آللی در سه بافت قلــب، عضـــله اسکلتی و طحـــال خروس های سازگار پرورش یافته در شرایط جغرافیایی کم ارتفاع و مرتفع مبتنی بر پایگاه های با دسترسی آزاد داده های RNA-Seq

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

2 استاد، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

3 استادیار، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی

4 استادیار، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

5 محقق، مرکز تحقیقات کشاورزی ویکتوریا، اگری بیو، مرکز علوم زیستی کشاورزی،کمربندی شماره 5، بندورا، ویکتوریا 3083، استرالیا

6 محقق، دانشکده زیست‌شناسی سامانه‌‌ای، دانشگاه لا تروب، بندورا، ویکتوریا 3083، استرالیا

چکیده

پژوهش حاضر به­منظور بررسی مقایسه­ای پروفایل توام بیان ژن و الگوی بیان اختصاصی آللی (ASE) در سه بافت قلــب، عضـــله و طحـــال خروس­های پرورش­یافته و سازگار به مناطق کم ارتفاع و مرتفع مبتنی بر پایگاه­های داده­های RNA-Seq با دسترسی آزاد انجام شد. بدین منظور، مجموع داده­های ترانسکریپتوم برای 54 خروس در سه بافت مورد اشاره از راه هم­ردیفی و نقشه­یابی خوانش­های خام RNA-Seq روی توالی کل ژنوم مرجع مرغ اهلی با استفاده از نرم افزار TopHat2 مورد مطالعه قرار گرفت. همچنین، تجزیه و تحلیل بیان افتراقی ژن میان خروس­ها با استفاده از نرم افزار cufflinks،­2260 ژن دارای تفاوت بیان را در دو منطقه جغرافیایی نشان داد (0002/0P=). شناسایی و یافتن چندشکلی­های تک نوکلئوتیدی (SNP) با استفاده از بسته نرم افزاریSamtools ، به فهرستی شامل تعداد 475996، 388224 و 1169394 SNP به­ترتیب در بافت­های قلب، عضله و طحال انجامید. پس از انجام آزمون کای اسکوئر، 48906 (3/10%)، 28529 (3/7%) و 76251 (5/6%) SNP به­عنوان  ASE-SNP در بافت­های قلب، عضله و طحال مشاهده شدند (05/0P<). مقایسه پروفایل بیان ژن و ASE-SNPهای کشف شده در سویه­های سازگار با محیط­های پرورشی متفاوت از نظر ارتفاع می­توانند برای شناسایی جهش­های مقاومت در برابر بیماری­های مرتبط با پرورش در محیط­های مختلف مورد استفاده قرار گیرد. در مجموع، نتایج این مطالعه می­تواند روشی موثر و کارآمد و منبع جدید و مطلوبی را برای انتخاب، پیش­روی متخصصان اصلاح نژاد دام و طیور قرار دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparative study of gene expression and allele-specific expression in three tissues of the heart, muscle, and spleen of roosters adapted to low and high altitude regions based on open access RNA-Seq databases

نویسندگان [English]

  • M. Salimpour 1
  • S. Z. Mirhosseini 2
  • M. H. Banabazi 3
  • Sh. Ghovvati 4
  • M. Khansefid 5 6
1 Ph.D. Student, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Professor, Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Assistant Professor, Department of Biotechnology, Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
4 Assistant Professor, Department of Animal Science, University of Guilan, Rasht, Iran
5 Researcher, Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Vic. 3083, Australia|Researcher, School of Applied Systems Biology, La Trobe University, Bundoora, Vic. 3083, Australia
6 Researcher, Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Vic. 3083, Australia|Researcher, School of Applied Systems Biology, La Trobe University, Bundoora, Vic. 3083, Australia
چکیده [English]

Introduction: Gene regulation can be assessed by allele-specific expression (ASE), which has the potential to cause phenotypic variation. The variants associated with gene regulation can be found using ASE. Transcriptomic variation in gene expression is known to play an important role in the formation of the phenotype. Single base variations resulting from transitions (C/T or G/A) or transversions (C/G, C/A, T/A, T/G) of nucleotides at the same position between individual nucleotides in genomic DNA sequences are known as single nucleotide polymorphisms (SNPs). SNPs are important molecular markers used in breeding and genetic research. Next-generation sequencing is advancing rapidly and provides a high-throughput approach for SNP discovery in the transcriptome or genome. Transcriptome studies can bridge the gaps between genotypes and phenotypes and provide insights into the mechanisms linking sequence and function. An effective transcriptome mapping and quantification technique for studying global gene expression is RNA sequencing or RNA-Seq. For this reason, RNA-Seq is a next-generation sequencing technology that can analyze gene expression profiles and the entire transcriptome. This study aimed to identify differential gene expression and SNPs in three tissues of the heart, muscle, and spleen of roosters adapted to low and high altitude regions based on open access RNA-Seq databases.
Materials and methods: RNA-Seq data from 54 samples were collected from the SRA database in NCBI for chickens (NCBI GEO accession: GSE119387). The samples included 33.4, 30.3, and 35.3 million paired final reads of heart, muscle, and spleen tissues, each 100 bp in length. Illumina Hiseq 2000 was used to perform mRNA sequencing. The fastq-dump command in Sratoolkit 2.11 was used to convert data from SRA to FASTQ format  FastQC (version 0.11) was used to assess data quality and Trimmomatic (version 0.33) was used to trim the reads to eliminate adapters and low-quality sequences. Trimmed reads were aligned to the reference genome of the chicken species (Gallus gallus domesticus) and the gene annotation data (GRC6a) from Tophat2, whose core host is Bowtie2. By independently aligning and mapping the RNA-Seq reads of each sample to the chicken reference genome, the transcriptome was assembled. Then, the differential gene expression analysis was performed with cufflinks. The Samtools program performed SNP detection. Finally, using the R software (version 4.2.2), the chi-square test was used to compare the amount of expressed reference and alternative alleles in the polymorphic regions of heterozygous individuals to find the notable variations.
Results and discussion: As a result of gene expression analysis, 2260 genes were significantly differential expression (P<0.0002). Gene ontology analysis showed that these genes are in pathways related to heat stress and immune responses to the cause of trying to maintain body temperature involved and this cause was the activation of immune pathways. Identification of 1,473,176, 388,224, and 1,169,394 SNPs in the heart, muscle, and spleen tissues was enabled by SNP calling and discovery in the assembled transcriptome. The chi-square test revealed that the ASE-SNPs in the heart, muscle, and spleen tissues were 48,906 (10.3%), 28,529 (7.3%), and 76,251 (6.3%) SNPs (P<0.05). These SNPs were associated with 7,919, 6,182, and 10,590 genes in the heart, muscle, and spleen tissues. In three tissues, the number of reference and alternative alleles was shifted by 4.5% in favor of the reference allele. This suggests that the superiority of the reference allele over the reference genome during mapping may be related to mapping bias. Among the twelve potential SNPs and ASE-SNP types found, four were transition types (Ts) and eight were transformation types (Tv). The transition type accounted for 74% of the most common polymorphisms in the heart and 77% in the muscle and spleen. For ASE-SNPs, transition mutations accounted for 70% of all mutations in the heart tissue and 75% in the muscle and spleen tissue. These mutations were also the most common. The Ts/Tv ratios for the heart, muscle, and spleen tissues were 2.3, 3, and 3 in the ASE-SNP and 2.9, 3.3, and 2.2 in all SNPs, respectively. This indicated a decrease in Ts/Tv for the heart and muscle tissues in the ASE-SNP compared to all SNPs.
Conclusions: The results of the current study support the validity of identifying SNPs in transcriptionally active regions of the genome using RNA-Seq data. Further research is needed to determine whether the expression differences between reference and alternative alleles found in heterozygous roosters raised in different environments are related to tolerance to environmental stressors such as low oxygen levels.

کلیدواژه‌ها [English]

  • Allele-specific expression
  • Transcriptome
  • Single nucleotide polymorphism
  • Rooster
Alessio, N., Squillaro, T., Di Bernardo, G., Galano, G., De Rosa, R., Melone, M. A., & Galderisi, U. (2020). Increase of circulating IGFBP-4 following genotoxic stress and its implication for senescence. Elife, 9, e54523. doi: 10.7554/eLife.54523 
Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Arefnejad, B., Kohram, H., Moradi Shahrbabak, M., Shakeri, M., Dong, Y., Zhang, X., , Wang, W., & Hoseini Salekdeh, G. (2015). Genic variant detection of Caspian horse using high-throughput sequencing technology. Agricultural Biotechnology Journal, 6(4), 101-116.  [In Persian]
Ayroles, J. F., Hughes, K. A., Rowe, K. C., Reedy, M. M., Rodriguez Zas, S. L., Drnevich, J. M., Cáceres, C. E., & Paige, K. N. (2009). A genomewide assessment of inbreeding depression: gene number, function, and mode of action. Conservation Biology, 23(4), 920-930. doi: 10.1111/j.1523-1739.2009.01186.x
Banabazi, M. H., Nejati Javaremi, A., Imumorin, I., & Ghaderi Zefrei, M. (2017). Genetic variance explanation of Residual Feed Intake (RFI) by SNPs discovered on transcriptome of Holstein cows. Animal Sciences Journal, 30(114), 169-182. [In Persian]
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi: 10.1093/bioinformatics/btu170
Chen, C., Li, H., Xie, Q., Shang, H., Ji, J., Bai, S., & Bi, Y. (2011). Transcriptional profiling of host gene expression in chicken liver tissues infected with oncogenic Marek’s disease virus. Journal of General Virology92(12), 2724-2733. doi: 10.1099/vir.0.034066-0
Cheng, H. H., Perumbakkam, S., Pyrkosz, A. B., Dunn, J. R., Legarra, A., & Muir, W. M. (2015). Fine mapping of QTL and genomic prediction using allele-specific expression SNPs demonstrates that the complex trait of genetic resistance to Marek’s disease is predominantly determined by transcriptional regulation. BMC Genomics, 16, 1-9. doi: 10.1186/s12864-015-2016-0
Czarnecka, A. M., Campanella, C., Zummo, G., & Cappello, F. (2006). Heat shock protein 10 and signal transduction: a “capsula eburnea” of carcinogenesis. Cell Stress & Chaperones, 11(4), 287. doi: 10.1379/csc-200.1
Dar, M. A., Bhat, B., Nazir, J., Saleem, A., Manzoor, T., Khan, M., & Ahmad, S. M. (2023). Identification of SNPs Related to Salmonella Resistance in Chickens Using RNA-Seq and Integrated Bioinformatics Approach. Genes, 14(6), 1283. doi: 10.3390/genes14061283
Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260. doi: 10.14202/vetworld.2016.260-268
Degner J. F., Marioni, J. C., Pai, A. A., Pickrell, J. K., Nkadori, E., Gilad, Y., & Pritchard,  J. K. (2009). Effect of readmapping biases on detecting allele-specific expression from RNA-Sequencing data, Bioinformatics, 25(24), 3207-3212. doi: 10.1093/bioinformatics/btp579
Dolt, K. S., Mishra, M. K., Karar, J., Baig, M. A., Ahmed, Z., & Pasha, M. Q. (2007). cDNA cloning, gene organization and variant specific expression of HIF-1α in high altitude yak (Bos grunniens). Gene, 386(1-2), 73-80. doi: 10.1016/j.gene.2006.08.004
Dudok, J. J., Sanz, A. S., Lundvig, D. M., & Wijnholds, J. (2013). MPP3 is required for maintenance of the apical junctional complex, neuronal migration, and stratification in the developing cortex. Journal of Neuroscience, 33(19), 8518-8527. doi: 10.1523/JNEUROSCI.5627-12.2013
Gates, K., Sandoval-Castillo, J., Bernatchez, L., & Beheregaray, L. B. (2017). De novo transcriptome assembly and annotation for the desert rainbowfish (Melanotaenia splendida tatei) with comparison with candidate genes for future climates. Marine Genomics, 35, 63-68. doi: 10.1016/j.margen.2017.05.008
Gaur, U., Li, K., Mei, S., & Liu, G. (2013). Research progress in allele-specific expression and its regulatory mechanisms. Journal of Applied Genetics, 54, 271-283. doi: 10.1007/s13353-013-0148-y
Gibson, G., & Weir, B. (2005). The quantitative genetics of transcription. Trends in Genetics, 21(11), 616-623. doi: 10.1016/j.tig.2005.08.010
He, H., Chen, C., Xie, Y., Asea, A., & Calderwood, S. K. (2000). HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene. Cell Stress & Chaperones, 5(5), 406. doi: 10.1379/1466-1268(2000)005<0406:hahsfc>2.0.co;2
Heap, G. A., Yang, J. H., Downes, K., Healy, B. C., Hunt, K. A., Bockett, N.,  Franke, L., Dubois, P. C., Mein, C. A., Dobson, R. J. & Plagnol, V. (2010). Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing. Human Molecular Genetics, 19(1), 122-134. doi: 10.1093/hmg/ddp473
Hughes, K. A., Ayroles, J. F., Reedy, M. M., Drnevich, J. M., Rowe, K. C., Ruedi, E. A., & Paige, K. N. (2006). Segregating variation in the transcriptome: cis regulation and additivity of effects. Genetics, 173(3), 1347-1355. doi: 10.1534/genetics.105.051474
International Chicken Polymorphism Map Consortium. (2004). A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 432, 717-721. doi: 10.1038/nature03156
Jehl, F., Degalez, F., Bernard, M., Lecerf, F., Lagoutte, L., Désert, C.,  Coulée, M., Bouchez, O., Leroux, S., Abasht, B., & Tixier-Boichard, M. (2021). RNA-Seq data for reliable SNP detection and genotype calling: interest for coding variant characterization and cis-regulation analysis by allele-specific expression in livestock species. Frontiers in Genetics, 12, 655707. doi: 10.3389/fgene.2021.655707.
Jehl, F., Désert, C., Klopp, C., Brenet, M., Rau, A., Leroux, S., & Lagarrigue, S. (2019). Chicken adaptive response to low energy diet: main role of the hypothalamic lipid metabolism revealed by a phenotypic and multi-tissue transcriptomic approach. BMC Genomics, 20, 1-16. doi: 10.1186/s12864-019-6384-8
Johnson, B. J., Le, T. T., Dobbin, C. A., Banovic, T., Howard, C. B., Flores, F. D. M. L., & Suhrbier, A. (2005). Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. Journal of Biological Chemistry, 280(6), 4037-4047. doi: 10.1074/jbc.M411569200
Kaltenboeck, H. K., & Liu, Z. (2013). RNA-Seq reveals expression signatures of genes involved. Physiol. Genomics, 45, 462-476. doi: 10.1152/physiolgenomics.00026.2013
Kamineni, L. P. (2015). Transcriptomic analysis of hypothalamic responses to heat stress in modern and legacy chicken lines. University of Delaware.
Kassahn, K. S., Caley, M. J., Ward, A. C., Connolly, A. R., Stone, G., & Crozier, R. H. (2007). Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Molecular Ecology, 16(8), 1749-1763. doi: 10.1111/j.1365-294X.2006.03178.x
Khansefid, M., Pryce, J. E., Bolormaa, S., Chen, Y., Millen, C. A., Chamberlain, A. J., & Goddard, M. E. (2018). Comparing allele specific expression and local expression quantitative trait loci and the influence of gene expression on complex trait variation in cattle. BMC Genomics, 19, 1-18. doi: 10.1186/s12864-018-5181-0
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), 1-13. doi: 10.1186/gb-2013-14-4-r36
Kim, J. M., Lim, K. S., Byun, M., Lee, K. T., Yang, Y. R., Park, M., & Park, J. E. (2017). Identification of the acclimation genes in transcriptomic responses to heat stress of White Pekin duck. Cell Stress and Chaperones, 22(6), 787-797. doi: 10.1007/s12192-017-0809-6
Komori, T. (2003). Requisite roles of Runx2 and Cbfb in skeletal development. Journal of Bone and Mineral Metabolism, 21, 193-197. doi: 10.1007/s00774-002-0408-0
Kumar, H., Iskender, A. U., Srikanth, K., Kim, H., Zhunushov, A. T., Chooq, H., & Park, J. E. (2019). Transcriptome of chicken liver tissues reveals the candidate genes and pathways responsible for adaptation into two different climatic conditions. Animals, 9(12), 1076. doi: 10.3390/ani9121076
Lagarrigue, S., Martin, L., Hormozdiari, F., Roux, P. F., Pan, C., van Nas, A., & Lusis, A. J. (2013). Analysis of allele-specific expression in mouse liver by RNA-Seq: a comparison with Cis-eQTL identified using genetic linkage. Genetics, 195(3), 1157-1166. doi: 10.1534/genetics.113.153882
Lemos, B., Araripe, L. O., Fontanillas, P., & Hartl, D. L. (2008). Dominance and the evolutionary accumulation of cis-and trans-effects on gene expression. Proceedings of the National Academy of Sciences, 105(38), 14471-14476. doi: 10.1073/pnas.0805160105
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi: 10.1093/bioinformatics/btp324
Lo, H. S., Wang, Z., Hu, Y., Yang, H. H., Gere, S., Buetow, K. H., & Lee, M. P. (2003). Allelic variation in gene expression is common in the human genome. Genome Research, 13(8), 1855-1862. doi: 10.1101/gr.1006603
Lopes Pinto, F. A., Molin, A. M., Gilbert, E. R., Honaker, C. F., Siegel, P. B., Andersson, G.,  Andersson, L., & De Koning, D. J. (2014). Whole transcriptome sequencing in reciprocal crosses suggests parent-of-origin effects on gene expression in the chicken genome. Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, Canada.
Ma, Y., Ouyang, J., Wei, J., Maarouf, M., & Chen, J. L. (2016). Involvement of host non-coding RNAs in the pathogenesis of the influenza virus. International Journal of Molecular Sciences, 18(1), 39. doi: 10.3390/ijms18010039
Mayba, O., Gilbert, H. N., Liu, J., Haverty, P. M., Jhunjhunwala, S., Jiang, Z., & Zhang, Z. (2014). MBASED: allele-specific expression detection in cancer tissues and cell lines. Genome Biology, 15, 1-21. doi: 10.1186/s13059-014-0405-3
Monson, M. S., Settlage, R. E., Mendoza, K. M., Rawal, S., El-Nezami, H. S., Coulombe, R. A., & Reed, K. M. (2015). Modulation of the spleen transcriptome in domestic turkey (Meleagris gallopavo) in response to aflatoxin B 1 and probiotics. Immunogenetics, 67, 163-178. doi: 10.1007/s00251-014-0825-y
Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C., & Massie, B. (1997). Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Molecular and Cellular Biology, 17(9), 5317-5327. doi: 10.1128/MCB.17.9.5317
Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707-728. doi: 10.1017/S1751731111002448
Saito, Y., Yukawa, A., Matozaki, M., Mikami, H., Yamagami, T., Yamagishi, N., &  Nakayama, Y. (2014). Nmi interacts with Hsp105β and enhances the Hsp105β-mediated Hsp70 expression. Experimental Cell Research, 327(1), 163-170. doi: 10.1016/j.yexcr.2014.07.023
Smith, S., Bernatchez, L., & Beheregaray, L. B. (2013). RNA-Seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics, 14, 1-12. doi: 10.1186/1471-2164-14-375
Sonna, L. A., Fujita, J., Gaffin, S. L., & Lilly, C. M. (2002). Invited review: effects of heat and cold stress on mammalian gene expression. Journal of Applied Physiology, 92(4), 1725-1742. doi: 10.1152/japplphysiol.01143.2001
Tassanakajon, A., Somboonwiwat, K., Supungul, P., & Tang, S. (2013). Discovery of immune molecules and their crucial functions in shrimp immunity. Fish & Shellfish Immunology, 34(4), 954-967. doi: 10.1016/j.fsi.2012.09.021
Te Pas, M. F., Park, W., Srikanth, K., Kemp, S., Kim, J. M., Lim, D., & Park, J. E. (2019). Transcriptomic profiles of muscle, heart, and spleen in reaction to circadian heat stress in Ethiopian highland and lowland male chicken. Cell Stress and Chaperones, 24, 175-194. doi: 10.1007/s12192-018-0954-6
Tomlinson, I. V. M. J., Polson, S. W., Qiu, J., Lake, J. A., Lee, W., & Abasht, B. (2021). Investigation of allele specific expression in various tissues of broiler chickens using the detection tool VADT. Scientific Reports, 11(1), 3968. doi: 10.1038/s41598-021-83459-8
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., & Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi: 10.1038/nprot.2012.016
Tu, W. L., Cheng, C. Y., Wang, S. H., Tang, P. C., Chen, C. F., Chen, H. H.,  & Huang, S. Y. (2016). Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress. Theriogenology, 85(3), 483-494. doi: 10.1016/j.theriogenology.2015.09.028
Wang, Y., Saelao, P., Kern, C., Jin, S., Gallardo, R. A., Kelly, T., Dekkers, J.M., Lamont, S. J., & Zhou, H. (2020). Liver transcriptome responses to heat stress and Newcastle disease virus infection in genetically distinct chicken inbred lines. Genes, 11(9), 1067. doi: 10.3390/genes11091067
Wayne, M. L., Pan, Y. J., Nuzhdin, S. V., & McIntyre, L. M. (2004). Additivity and trans-acting effects on gene expression in male Drosophila simulans. Genetics, 168(3), 1413-1420. doi: 10.1534/genetics.104.030973
Yang, W., Qi, Y., & Fu, J. (2016). Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis. BMC Genetics, 17, 1-10. doi: 10.1186/s12863-016-0440-z
Zhang, J., Kaiser, M. G., Herrmann, M. S., Gallardo, R. A., Bunn, D. A., Kelly, T. R., & Lamont, S. J. (2017). Different genetic resistance resulted in distinct response to Newcastle disease virus. Iowa State University Animal Industry Report, 14(1).
Zhang, Y., & Cao, X. (2016). Long noncoding RNAs in innate immunity. Cellular & Molecular Immunology, 13(2), 138-147. doi: 10.1038/cmi.2015.68
Zhuo, Z., Lamont, S. J., & Abasht, B. (2017). RNA-Seq analyses identify frequent allele specific expression and no evidence of genomic imprinting in specific embryonic tissues of chicken. Scientific Reports, 7(1), 11944. doi: 10.1038/s41598-017-12179-9
Zumbrun, S. D., Hoffman, B., & Liebermann, D. A. (2009). Distinct mechanisms are utilized to induce stress sensor gadd45b by different stress stimuli. Journal of Cellular Biochemistry, 108(5), 1220-1231. doi: 10.1002/jcb.22354