اثر اسید وانیلیک بر عملکرد رشد، خصوصیات لاشه، متابولیت‌های خونی و کیفیت گوشت جوجه‌های گوشتی تغذیه شده با روغن رستورانی اکسید شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه جیرفت

2 گروه صنایع غذایی، دانشکده کشاورزی، دانشگاه جیرفت

چکیده

این آزمایش به­منظور بررسی اثر افزودن مکمل اسید وانیلیک بر عملکرد رشد، خصوصیات لاشه، متابولیت‌های خونی و کیفیت گوشت جوجه‌های گوشتی تغذیه شده با روغن اکسید شده در قالب یک آزمایش فاکتوریل 2×2 با چهار تیمار و چهار تکرار در قالب طرح کاملأ تصادفی روی 144 قطعه جوجه گوشتی نر یک‌روزه سویه راس 308 انجام شد. گروه‌های آزمایشی شامل جیره پایه+روغن سویا، جیره پایه+ روغن سویا و اسید وانیلیک، جیره پایه+روغن رستورانی و جیره پایه+روغن رستورانی و اسید وانیلیک بودند. در پایان آزمایش، یک پرنده از هر تکرار با وزن نزدیک به میانگین گروه انتخاب، خون‌گیری و کشتار شد. نتایج نشان داد که استفاده از روغن رستورانی، منجر به کاهش مصرف خوراک و وزن جوجه‌ها در دوره رشد، پایانی و کل دوره شد. افزودن اسید وانیلیک منجر به افزایش مصرف خوراک و وزن شد و ضریب تبدیل خوراک را بهبود داد (05/0>P). در جوجه‌های تغذیه شده با روغن رستورانی، وزن نسبی لاشه، سینه و ران کاهش یافت، در حالی ‌که مکمل اسید وانیلیک منجر به افزایش معنی‌دار وزن نسبی لاشه، سینه و ران شد (05/0>P). در جوجه‌های تغذیه شده با اسید وانیلیک، کلسترول خون کاهش یافت (05/0>P). روغن رستورانی منجر به کاهش تری‌گلیسرید خون شد (05/0>P). در جوجه‌های تغذیه شده با روغن اکسید شده، pH و ظرفیت نگهداری آب گوشت کاهش و افت پخت و خونابه افزایش یافت (05/0>P). با استفاده از مکمل اسید وانیلیک، pH و ظرفیت نگهداری آب گوشت افزایش و افت پخت و خونابه کاهش یافت (05/0>P). طبق نتایج این آزمایش، استفاده از روغن رستورانی اکسید شده منجر به کاهش مصرف خوراک، وزن پرنده و همچنین کاهش کیفیت لاشه و گوشت جوجه‌های گوشتی شد، در حالی که افزودن مکمل اسید وانیلیک، نقش موثری در بهبود عملکرد رشد، خصوصیات لاشه و کیفیت گوشت جوجه‌های گوشتی تغذیه شده با روغن رستورانی داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of vanillic acid supplementation on growth performance, carcass characteristics, blood metabolites, and meat quality of broilers fed oxidized restaurant oil

نویسندگان [English]

  • H. Kamali 1
  • M. Mazhari 1
  • O. Esmaeilipour 1
  • Y. Badakhshan 1
  • F. Shahdadi 2
1 Department of Animal Science, Faculty of Agriculture, University of Jiroft, Kerman, Iran
2 Department of Food Science, Faculty of Agriculture, University of Jiroft, Kerman, Iran
چکیده [English]

Introduction: Adding vegetable oils to broiler diets is common to supply energy and essential fatty acids and to increase diet palatability. Due to the high expense of vegetable oils, using restaurant oil in broiler diets has been increased. After the oxidation of these oils, certain compounds are formed, such as free radicals, peroxides, and secondary oxidation products such as malondialdehyde. These oxidation products have some negative effects on the growth performance and meat quality of broilers. One common method of inhibiting the oxidation process of oil is the use of antioxidants. The main active substance isolated from angelica and green tea, vanillin acid, is an oxidized vanillin compound consisting of phenols that inhibit lipid peroxidation in cells. In addition, vanillic acid has antioxidant, antimicrobial, anti-inflammatory, anticancer, and protective effects on the liver and may help improve broiler performance and meat quality. Therefore, this study was performed to investigate the effect of vanillic acid supplementation on growth performance, blood metabolites, and meat quality of broilers fed oxidized oil.
Materials and methods: This experiment was conducted as a completely randomized design on 144 one-day-old Ross 308 male broilers using a 2×2 factorial design with four treatments, four replicates, and nine chicks per replication. Experimental treatments included: 1. A basal diet with soybean oil, 2. A diet with oxidized oil, 3. A diet with soybean oil+100 mg vanillic acid, and 4. A diet with oxidized oil+100 mg vanillic acid. Diets were formulated as isocaloric and isonitrogenous, and then a vanillic acid supplement was added to experimental diets. Restaurant oil was replaced completely with soybean oil in treatments containing this oil. The performance traits, such as feed intake and body weight gain, were recorded for three periods including starter (1-10 days), grower (11-24 days), and finisher (25-42 days), and then, feed conversion ratio was determined. Broilers were treated for 42 days and one bird from each replicate was selected and blood samples were collected from the brachial vein. The collected samples were centrifuged at 3000 rpm for 10 minutes to separate the serum and the metabolites of the blood, including glucose, total cholesterol, and triglyceride, were analyzed. After slaughter, carcass and internal organs were weighted for measuring carcass traits. The breast and thigh were separated from the carcass and transferred to the refrigerator. Meat quality parameters, including water holding capacity, cooking loss, dripping loss, and meat pH, were measured one day after slaughter. The data obtained from this experiment were statistically analyzed using the GLM procedure SAS software. The comparison of means was conducted using the Tukey test at P<0.05.
Results and discussion: The results showed that in grower, finisher, and whole period, broilers fed by oxidized oil had the lowest feed intake (FI) and body weight gain (BWG), while the addition of vanillic acid improved FI, BWG, and feed conversion ratio (P<0.05). The interaction effect was significant for the growth performance and broilers fed with restaurant oil had the lowest BWG and FI, while vanillic acid-fed chicks had the highest BWG and FI (P<0.05). The relative weight of carcass, breast, and thigh was lower in broilers fed by oxidized oil, while vanillic acid supplementation caused a higher relative weight of these organs (P<0.05). The effect of treatments on the relative weight of internal organs was not significant. The effect of treatment on blood glucose was not significant. Vanillic acid decreased blood cholesterol, while oxidized oil treatment caused a decrease in blood triglyceride (P<0.05). The broilers fed by oxidized oil had lower meat pH and water holding capacity (WHC) and higher drip loss (DL) and cooking loss (CL), while vanillic supplementation decreased DL and CL, and increased pH and WHC (P<0.05). A negative impact of oxidized oil on growth performance has been reported due to the peroxidation products and their effect on the health of poultry and food. Vanillic acid is an effective compound with antioxidant and antimicrobial properties that can help in improving the negative effect of oxidized oil on performance and meat quality of broilers, by controlling the free radicals produced by oxidized oils.
Conclusions: Based on the results, the restaurant oil resulted in a decrease in feed intake, body weight, carcass, and breast relative to the broilers, as well as a decrease in the meat quality of the broiler, whereas the vanillic acid supplement increased BWG, FI, body weight and meat quality of the broiler fed with the oxidized oil. It can therefore be concluded that vanillic acid supplementation may be useful in improving the growth performance, carcass yield, and meat quality of broiler chickens when consumed in the form of restaurant oils.

کلیدواژه‌ها [English]

  • Vanillic acid
  • Cooking loss
  • Broiler
  • Oxidized oil
  • Breast weight
Anjum, M. I., Mirza, I. H., Khan, A. G., & Azim, A. (2004). Effect of fresh versus oxidized soybean oil on growth performance, organs weights and meat quality of broiler chicks. Pakistan Veterinary Journal, 24(4), 173-178. ‏
Attia, Y. A., Abd El-Hamid, E. A. H., Nagadi, S. A., de Oliveira, M. C., Bovera, F., & Habiba, H. I. (2019). Dietary distilled fatty acids and antioxidants improve nutrient use and performance of Japanese male quails. Animal Science Papers and Reports, 37, 65-74.
Baiao, N. C., & Lara, L. J. C. (2005). Oil and fat in broiler nutrition. Brazilian Journal of Poultry Science, 7(3),129-141. ‏ doi: 10.1590/S1516-635X2005000300001
Bayraktar, H., Altan, O. Z. G. E., Açıkgoz, Z., Baysal, S. H., & Şeremet, C. (2011). Effects of oxidised oil and vitamin E on performance and some blood traits of heat-stressed male broilers. South African Journal of Animal Science, 41(3), 288-296. ‏doi: 104314/sajas.v41i3.12
Bertram, H. C., Andersen, H. J., Karlsson, A. H., Horn, P., Hedegaard, J., Norgaard, L., & Engelsen, S. B. (2003). Prediction of technological quality (cooking loss and Napole Yield) of pork based on fresh meat characteristics. Meat Science, 65(2), 707-712. doi: 10.1016/S0309-1740(02)00272-3
Calixto-Campos, C., Carvalho, T. T., Hohmann, M. S., Pinho-Ribeiro, F. A., Fattori, V., Manchope, M. F., Zarpelon, A. C., Baracat, M. M., Georgetti, S. R., Casagrande, R., & Verri Jr, W. A. (2015). Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. Journal of Natural Products78(8), 1799-1808. doi: 10.1021/acs.jnatprod.5b00246
Castellini, C., Mugnai, C. A. N. D., & Dal Bosco, A. (2002). Effect of organic production system on broiler carcass and meat quality. Meat Science, 60(3), 219-225. doi: 10.1016/s0309-1740(01)00124-3
Cazares-Gallegos, R., Silva-Vazquez, R., Hernandez-Martinez, C. A., Gutierrez-Soto, J. G., Kawas-Garza, J. R., Hume, M. E., & Mendez-Zamora, G. M. (2019). Performance, carcass variables, and meat quality of broilers supplemented with dietary Mexican oregano oil. Brazilian Journal of Poultry Science, 21(01). doi: 10.1590/1806-9061-2018-0801
Chang, W. C., Wu, J. S. B., Chen, C. W., Kuo, P. L., Chien, H. M., Wang, Y. T., & Shen, S. C. (2015). Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and inflammation in high-fat diet (HFD)-fed rats. Nutrients, 7(12), 9946-9959. doi: 10.3390/nu7125514
Chowdhury, S., Mandal, G. P., Patra, A. K., Kumar, P., Samanta, I., Pradhan, S., & Samanta, A. K. (2018). Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology, 236, 39-47. doi: 10.1016/j.anifeedsci.2017.12.003
Christensen, L. B. (2003). Drip loss sampling in porcine m. longissimus dorsi. Meat Science, 63(4), 469-477. doi: 10.1016/s0309-1740(02)00106-7
Duskaev, G., Kurilkina, M., & Zavyalov, O. (2023). Growth-stimulating and antioxidant effects of vanillic acid on healthy broiler chickens. Veterinary World, 16(3), 518. doi: 10.14202/vetworld.2023.518-525
Eler, G., Gomes, A. V. C., Trindade, B. S., Almeida, L. S. L., Dilelis, F., Cardoso, V. S., & Lima, C. A. R. (2019). Oregano essential oil in the diet of broilers: performance, carcass characteristics, and blood parameters. South African Journal of Animal Science, 49(4), 753-762. doi: 10.4314/sajas. v49i4.17
Jonaidi Jafari, N., Kargozari, M., Ranjbar, R., Rostami, H., & Hamedi, H. (2018). The effect of chitosan coating incorporated with ethanolic extract of propolis on the quality of refrigerated chicken fillet. Journal of Food Processing and Preservation, 42(1), e13336.doi:10.1111/jfpp.13336
Hintz, T., Matthews, K. K., & Di, R. (2015). The use of plant antimicrobial compounds for food preservation. BioMed Research International, 2015(1), 246264. doi: 10.1155/2015/246264
Hong, J. C., Steiner, T., Aufy, A., & Lien, T. F. (2012). Effects of supplemental essential oil on growth performance, lipid metabolites and immunity, intestinal characteristics, microbiota and carcass traits in broilers. Livestock Science, 144(3), 253-262. doi: 10.1016/j.livsci.2011.12.008
Hu, R., Wu, S., Li, B., Tan, J., Yan, J., Wang, Y., Tang, Z., Liu, M., Fu, C., Zhang, H., & He, J. (2022). Dietary ferulic acid and vanillic acid on inflammation, gut barrier function and growth performance in lipopolysaccharide-challenged piglets. Animal Nutrition, 8, 144-152. doi: 10.1016/j.aninu.2021.06.009
Kishawy, A. T., Omar, A. E., & Gomaa, A. M. (2016). Growth performance and immunity of broilers fed rancid oil diets that supplemented with pomegranate peel extract and sage oil. Japanese Journal of Veterinary Research, 64(Suppl. 2), 31-38.
Kaleem, A., Aziz, S., & Iqtedar, M. (2015). Investigating changes and effect of peroxide values in cooking oils subject to light and heat. FUUAST Journal of Biology, 5(2), 191-196.
Khattak, F., Ronchi, A., Castelli, P., & Sparks, N. (2014). Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poultry Science, 93(1), 132-137. doi: 10.3382/ps.2013-03387
McGill, J., McGill, E., Kamyab, A., & Firman, J. (2011). Effect of high peroxide value fats on performance of broilers in a normal immune state. International Journal of Poultry Science, 10(10), 241-246. doi: 10.3923/ijps.2011.241.246
Mikołajczak, N., Tańska, M., & Ogrodowska, D. (2021). Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability. Trends in Food Science and Technology, 113, 110-138. doi: 10.1016/j.tifs.2021.04.046
Moradi, M. K. H., Saleh, H., & Mirakzahi, M. T. (2021). The effects of hydroalcoholic extract of boerhavia elegans and vitamin E on performance and antioxidant status of broilers in diets containing oxidized oil. Animal Environment Journal, 13(3), 95-104. doi:10.22069/psj.2022.19864.1768
Mountzouris, K. C., Paraskevas, V., Tsirtsikos, P., Palamidi, I., Steiner, T., Schatzmayr, G., & Fegeros, K. (2011). Assessment of a phytogenic feed additive effect on broiler growth performance, nutrient digestibility and caecal microflora composition. Animal Feed Science and Technology, 168(3-4), 223-231. doi: 10.1016/j.anifeedsci.2011.03.020
Moustafa, N., Aziza, A., Orma, O., & Ibrahim, T. (2020). Effect of supplementation of broiler diets with essential oils on growth performance, antioxidant status, and general health. Mansoura Veterinary Medical Journal, 21(1), 14-20. doi: 10.35943/mvmj.2020.21.103
Nobakht, M., Darmani-Kuhi, H., & Mohiti-Asli, M. (2017). Effect of Zataria multiflora boiss (thyme) extract and fat on meat quality, intestinal pH and serum antioxidant status of broiler chicks. Animal Production Research, 6(2), 51-61. [In Persian]
Salama, A. M., Belih, S. S., & Khedr, N. E. (2023). Impact of dietary oregano plant extract supplementation on carcass traits, physical and chemical meat quality of broilers. Journal of Advanced Veterinary Research, 13(7), 1386-1393.
Samadian, F., Tohidi, A., Zainaldini, S., Karimi, M., Ansari, Z., Gholamzade, P., & Taghizadeh, M. (2013). The effect of adding essential oils of thyme, lemon, mint and zenian in the diet of male broiler chickens on meat quality parameters. Livestock Production Research, 4(7), 78-91. [In Persian]
Tan, L., Rong, D., Yang, Y., & Zhang, B. (2018). Effect of oxidized soybean oils on oxidative status and intestinal barrier function in broiler chickens. Brazilian Journal of Poultry Science, 20(02), 333-342. doi: 10.1590/1806-9061-2017-0610
Tan, L., Rong, D., Yang, Y., & Zhang, B. (2019). The effect of oxidized fish oils on growth performance, oxidative status, and intestinal barrier function in broiler chickens. Journal of Applied Poultry Research, 28(1), 31-41. doi: 10.3382/japr/pfy013
Tavarez, M. A., Boler, D. D., Bess, K. N., Zhao, J., Yan, F., Dilger, A. C., McKeith, F. K., & Killefer, J. (2011). Effect of antioxidant inclusion and oil quality on broiler performance, meat quality, and lipid oxidation. Poultry Science, 90(4), 922-930. doi: 10.3382/ps.2010-01180
Tiihonen, K., Kettunen, H., Bento, M. H. L., Saarinen, M., Lahtinen, S., Ouwehand, A. C., Schulze, H., & Rautonen, N. (2010). The effect of feeding essential oils on broiler performance and gut microbiota. British Poultry Science, 51(3), 381-392. doi: 10.1080/00071668.2010.496446
Vinothiya, K., & Ashokkumar, N. (2017). Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomedicine and Pharmacotherapy, 87, 640-652. doi: 10.1016/j.biopha.2016.12.134
Vossen, E., Ntawubizi, M., Raes, K., Smet, K., Huyghebaert, G., Arnouts, S., & De Smet, S. (2011). Effect of dietary antioxidant supplementation on the oxidative status of plasma in broilers. Journal of Animal Physiology and Animal Nutrition, 95(2), 198-205. doi: 10.1111/j.1439-0396.2010. 01041.x
Zhang, Q., Saleh, A. S., Chen, J., & Shen, Q. (2012). Chemical alterations taken place during deep-fat frying based on certain reaction products: A Review. Chemistry and Physics of Lipids, 165(6), 662-681. doi: 10.1016/j.chemphyslip.2012.07.002