بررسی اثر سطوح مختلف خوراک ضایعات بادام زمینی بر عملکرد، گوارش‌پذیری مواد مغذی، فعالیت آنتی‌اکسیدانی شکمبه و رفتار تغذیه ای بره‌های پرواری لری-بختیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه لرستان

2 بخش علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی‌آباد، سازمان تحقیقات، آموزش و ترویج کشاورزی، دزفول، ایران

چکیده

هدف از انجام پژوهش حاضر بررسی آثار سطوح مختلف خوراک ضایعات بادام زمینی بر عملکرد، گوارش‌پذیری ظاهری مواد مغذی، فعالیت آنتی‌اکسیدانی شکمبه و رفتار تغذیه­ای بره­های پرواری بود. در این پژوهش از تعداد 28 رأس بره پرواری با میانگین سنی 6±120روزه و میانگین وزن زنده 5/2±30 کیلوگرم در قالب طرح کاملاً تصادفی با چهار تیمار آزمایشی و هفت تکرار استفاده شد. جیره­های آزمایشی شامل شاهد (بدون استفاده از ضایعات بادام زمینی) و گنجاندن سطوح مختلف این محصول فرعی (4، 8 و 12 درصد ماده خشک جیره) بودند که به­مدت 60 روز به دام­ها تغذیه شدند. گوارش‌پذیری ظاهری مواد مغذی جیره­های آزمایشی به روش نشانگر داخلی خاکستر نامحلول در اسید و در روز 43 آزمایش به­مدت یک هفته اندازه‌گیری شد. تعیین ظرفیت آنتی‌اکسیدانی کل مایع شکمبه در روز 45 آزمایش و در زمان سه ساعت پس از خوراک­دهی وعده صبح انجام شد. رفتار تغذیه­ای در روز 47 آزمایش و به­مدت 24 ساعت با روش چشمی تعیین شد. مقادیر ماده خشک، پروتئین خام، خاکستر خام، چربی خام، الیاف نامحلول در شوینده خنثی، الیاف نامحلول در شوینده اسیدی، کربوهیدرات‌های غیرالیافی و ترکیبات فنولی ضایعات بادام زمینی به­ترتیب 22/2±92، 46/0±8/22، 26/0±5/16، 016/0±28/1، 53/0±7/25، 33/1±0/19، 57/34±0 و 35/0±5/21 درصد ماده خشک و انرژی قابل سوخت و ساز 075/0±4/2 مگاکالری در کیلوگرم ماده خشک تعیین شد. استفاده از سطوح مختلف خوراک ضایعات بادام زمینی در جیره در مقایسه با تیمار شاهد، تأثیر معنی‌داری بر مصرف مواد مغذی، فراسنجه‌های عملکرد، گوارش‌پذیری مواد مغذی و فعالیت خوردن و نشخوار بره­ها نداشت (05/0P>). با افزایش مقدار ضایعات بادام زمینی در جیره تا سطح 12 درصد، ظرفیت کل آنتی‌اکسیدانی شکمبه افزایش یافت، اما فعالیت جویدن در مقایسه با تیمار شاهد کاهش نشان داد (05/0>P). در کل، نتایج پژوهش حاضر نشان داد که استفاده از ضایعات بادام زمینی تا سطح 12 درصد ماده خشک جیره غذایی بره‌های پرواری قابل توصیه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of different levels of peanut waste feed on performance, nutrient digestibility, rumen antioxidant activities, and feeding behavior of Lori-Bakhtiari fattening lambs

نویسندگان [English]

  • F. Dalvand 1
  • A. Azizi 1
  • A. Kiani 1
  • A. Fadayfar 1
  • A. Jolazadeh 2
1 Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
2 Animal Science Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extention (AREEO), Dezful, Iran
چکیده [English]

Introduction: In recent years, the increasing demand for feed to increase livestock production and the climate problems have led to a significant increase in the price of feed, especially protein-based feed. The proper processing and use of alternative and cheap by-products therefore increases livestock production and contributes to the country's livestock feed shortage. Peanut waste is one of such by-products. Peanut, with the scientific name of Arachis hypogaea, belongs to the Legume family, which is also called groundnut or pistachio. Peanuts are classified as an oil seed because of their high oil content and are grown in much of the world and are rich in protein and fiber. The crude protein (CP) digestibility of peanuts is reported to be about 70%, but its fat digestibility varies based on the fatty acid structure. Peanuts contain anti-nutritional factors such as phenolic compounds (procyanidins) and phytic acid, which reduce the bioavailability of other nutrients, but this amount is lower in peanuts than in legumes such as soybeans. After oil extraction, peanut meal is produced, which is used as a source of protein in animal feed. By-products of peanut cultivation include almond husk, almond outer shell, thin skin on almond kernel, and peanut waste feed (PWF). Peanut shells are produced in large quantities annually and are discarded without any specific use or economic value. About 34 -35 grams of shells are produced per kg of peanut kernel. The annual production of peanut shells in the world is about 740 thousand tons as waste from the peanut processing industry. In a study, the CP, neutral detergent insoluble fiber (NDF), crude fat, total digestible nutrients, and condensed tannins of peanut shells were reported to be 22.7, 32.6, 19, 87.8, and 15.6% dry matter (DM), respectively. Phenolic compounds in peanut shells, such as tannins, may have positive effects on animal performance. In another study, the CP, crude fat, and total carbohydrate contents of peanut kernel shells were determined to be 12, 16, and 72% (DM basis), respectively, and the total phenolic content was determined to be 140-150 mg/g DM. In a study, supplementing goat diets with 25 and 50% peanut shells on a DM basis increased DM intake and daily weight gain, while also reducing fecal microbial load. In Iran's northern provinces, a significant area of land is devoted to peanut production. Peanuts are mostly consumed as nuts in Iran, so unfortunately, accurate amounts of peanut waste production are not available. The PWF is a new food waste produced in Iran and consists of the almond shell (hard shell), kernel waste, and the thin brown shell around the kernel. So far, few studies have been conducted to investigate the effects of feeding diets containing PWF on ruminant nutrition. Therefore, the purpose of this research was to investigate the effects of different levels of PWF on performance, apparent nutrient digestibility, rumen antioxidant activity, and nutritional behavior of Lori-Bakhtiari fattening lambs.
Materials and methods: In this research, 28 fattening lambs with an average age of 120±6 days and an average live weight of 30±2.50 kg were used in a completely randomized design with four treatments and seven replications. The experimental diets were PWF included in the diet at levels 0 (control), 4, 8, and 12% DM and were fed to lambs for 60 days. Diet nutrient digestibility was measured using acid-insoluble ash as an internal marker on the 43rd day of the experiment. Determination of the total rumen antioxidant capacity was performed on the 45th day of the experiment and 3 hours after morning feeding. The feeding behavior of fattening lambs was determined visually on the 47th day of the experiment for 24 hours.
Results and discussion: The contents of DM, crude protein, crude ash, crude fat, neutral detergent fiber, acid detergent fiber, non-fibrous carbohydrates, and total phenolic compounds of PWF were 92±2.22, 22.8±0.46, 16.5±0.26, 1.28±0.016, 25.7±0.53, 19.1±0.33, 34±0.57, and 21.5±0.35% DM, respectively, and metabolizable energy content was 2.4±0.075 Mcal/kg DM. Using different levels of PWF in the diet had no significant effect on nutrient intake, growth performance parameters, nutrient digestibility, and eating and rumination behavior (minutes per day) of fattening lambs (P>0.05). By increasing the level of PWF in the diet up to 12%, the total antioxidant capacity of the rumen increased, but the chewing behavior (minutes per day) in fattening lambs decreased compared to the control treatment (P<0.05).
Conclusions: The results generally indicated that the use of peanut waste up to 12% DM is recommended in the diet of fattening lambs.

کلیدواژه‌ها [English]

  • Fattening lamb
  • Nutritional behavior
  • Growth performance
  • Peanut waste
  • Digestibility
AOAC. (2005). Official methods of analysis. Association of Official Analytical Chemists, Washington, DC. USA.
Azizi-Shotorkhoft, A., Fazaeli, H., Papi, N., & Rezaei, J. (2015). Effect of different levels of processed broiler litter on the feed intake, digestibility, performance, ruminal and blood metabolites in Moghani male lambs. Iranian Journal of Animal Science, 45(4), 385-392 [In Persian]
Azizi-Shotorkhoft, A., Rezaei, J., Papi, N., Mirmohammadi, D., & Fazaeli, H. (2014). Effect of feeding heat-processed broiler litter in pellet-form diet on the performance of fattening lambs. Journal of Applied Animal Research, 43(2), 184-190. doi: 10.1080/09712119.2014.928636
Bach, A., Calsamiglia, S., & Stern, M. D. (1999). Nitrogen metabolism in the rumen. Journal of Dairy Science, 88(E. Suppl), E9e21. doi: 10.3168/jds.S0022-0302(05)73133-7
Barry, T. N., & McNabb, W. C. (1999). The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition, 81, 263e72. doi: 10.1016/S0377-8401(03)00041-5
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi: 10.1006/abio.1996.0292
Chamorro, F., Carpena, M., Fraga-Corral, M., Echave, J., Rajoka, M. S. R., Barba, F. J., Cao, H., Xiao, J., Prieto, M., & Simal-Gandara, J. (2022). Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chemistry, 370, 131315. doi: 10.1016/j.foodchem.2021.131315
Farhadi, M., Hedayati, M., Manafi, M., & Khalaji, S. (2020). Influence of using sage powder (Salvia officinalis) on performance, blood cells, immunity titers, biochemical parameters and small intestine morphology in broiler chickens. Iranian Journal of Applied Animal Science, 10(3), 509-516.
Koenig, K. M., & Beauchemin, K. A. (2018). Effect of feeding condensed tannins in high protein finishing diets containing corn distiller's grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. Journal of Animal Science, 96, 4398e413. doi: 10.1093/jas/sky273
Koenig, K. M., Beauchmin, K. A., & McGinn, S. M., (2018). Feeding condensed tannins to mitigate ammonia emissions from beef feedlot cattle fed high-protein finishing diets containing distillers grains. Journal of Animal Science, 96, 4414e30. doi: 10.1093/jas/sky274
Kononoff, P. J., Lehman, H. A., & Heinrichs, A. J. (2002). Technical note—a comparison of methods used to measure eating and ruminating activity in confined dairy cattle. Journal of Dairy Science, 85, 1801-1803. doi: 10.3168/jds.S0022-0302(02)74254-9
Larsson, S., & Wolk, A. (2007). Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. British Journal of Cancer, 97, 1005-1008. doi: 10.1038/sj.bjc.6603932
Makkar, H. P. S. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumininant Research, 49, 241e56. doi: 10.1016/S0921-4488(03)00142-1
Mallidadi, H., Nikolaus, T. T., & Enawati, L. S. (2019). Pengaruh level serat terhadap konsumsi dan kecernaan nutrien sapi varian genetik dan sapi bali normal. Jurnal Peternakan Lahan Kering, 1, 410-416.
Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Animal Research and Development, 28, 7-55. doi: 10.57089/jplk.v1i3.276
Min, B. R., Barry, T. N., Attwood, G. T., & McNabb, W. C. (2003). The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology, 106, 3e19. doi: 10.1016/S0377-8401(03)00041-5
Min, B. R., Frank, A., Gurung, N., Lee, J. H., Joo, J. W., & Pacheco, W. (2019). Peanut skin in diet alters average daily gain, ruminal and blood metabolites, and carcass traits associated with Haemonchus contortus infection in meat goats. Animal Nutrition, 5, 278-285. doi: 10.1016/j.aninu.2019.05.006
Min, B. R., Solaiman, S., Gurung, N., Behrends, J., Eun, J. S., Taha, E., & Rose, J. (2012). Effects of pine bark supplementation on performance, rumen fermentation, and carcass characteristics of Kiko crossbred male goats. Journal of Animal Science, 90, 3556-3567. doi: 10.2527/jas.2011-4931
National Research Council. (2007). Nutrient requirements of small ruminants: Sheep, Goats, Cervids, and New World Camelids. USA. 
Nepote, V., Lamarque, A., & Zygadlo, J. (2006). Natural products as antioxidants. Phytochemistry: Advances in Research, 37, 105-135. doi: 10.3390/ijms18010096
Placha, I., Ryzner, M., Cobanova, K., Faixova, Z., & Faix, S. (2015). Effects of dietary supplementation with sage (Salvia officinalis L.) essential oil on antioxidant status and duodenal wall integrity of laying strain growers. Polish Journal of Veterinary Sciences, 18(4), 741-749. doi: 10.1515/pjvs-2015-0096
Rajabi, M., Rouzbehan, Y., & Rezaei, J. (2017). A strategy to improve nitrogen utilization, reduce environmental impact, and increase performance and antioxidant capacity of fattening lambs using pomegranate peel extract. Journal of Animal Science, 95, 499-510. doi: 10.2527/jas.2016.1069
SAS Institute. (2005). SAS User’s Guide. Version 9.0. SAS Institute Inc., Cary, NC, USA.
Schofield, P., Mbugua, D. M., & Pell, A. N. (2001). Analysis of condensed tannins: a review. Animal Feed Science and Technology, 91, 21e40. doi: 10.1016/S0377-8401(01)00228-0
Shi, F. Y., Guo, N., Degen, A. A., Niu, J. H., Wei, H. Y., Jing, X. P., Ding, L. M., Shang, Z. H., & Long, R. J. (2020). Effects of level of feed intake and season on digestibility of dietary components, efficiency of microbial protein synthesis, rumen fermentation and ruminal microbiota in yaks. Animal Feed Science and Technology, 259, 114359. doi: 10.1016/j.anifeedsci.2019.114359
Shipp, A., Min, B. R., Gurung, N., Hyung, J. W., & McElhenney, W. (2017). The effect of tannin containing peanut skin supplementation on drug-resistant Haemonchus cornturtus control in meat goats. Asian Journal of Advances in Agricultural Research, 3, 1e9. doi: 10.9734/AJAAR/2017/36993
Sobolev, V. S., & Cole, R. J. (2003). Note on utilization of peanut seed test. Journal of the Science of Food and Agriculture, 84, 105-111. doi: 10.1002/jsfa.1593
Suchoszek-Lukaniuk, K., Jaromin, A., Korycińska, M., & Kozubek, A. (2011). Health benefits of peanut (Arachis hypogaea L.) seeds and peanut oil consumption, nuts and seeds in health and disease prevention. Nuts and Seeds in Health and Disease Prevention, 34, 873-880. doi: 10.1016/B978-0-12-375688-6.10103-3
Toomer, O., Vu, T., Wysocky, R., Moraes, V., Malheiros, R., & Anderson, K. (2021). The effect of feeding hens a peanut skin-containing diet on hen performance, and shell egg quality and lipid chemistry. Agriculture, 11(9), 894. doi: 10.3390/agriculture11090894
Utley, P. R., Hill, G. M., & West, J. W. (1993). Substitution of peanut skins for soybean hulls in steer finishing diets containing recommended and elevated crude protein levels. Journal of Animal Science, 71, 33e7. doi: 10.2527/1993.71133x
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2
Van-Keulen, J., & Young, B. A. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44, 282-289. doi: 10.2527/jas1977.442282x
Zhao, X., Chen, J., & Du, F. (2012). Potential use of peanut by-products in food processing: a review. Journal of Food Science and Technology, 49, 521-529. doi: 10.1007/s13197-011-0449-2