اثر بلوس آهسته‌رهش حاوی روی، سلنیوم، مس، کبالت، منگنز و ید بر عملکرد رشد و فراسنجه های خونی بره‌های نر مهربان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده کشاورزی، دانشگاه بوعلی سینا

چکیده

به­منظور بررسی اثر بلوس­های آهسته‏رهش حاوی عناصر روی، سلنیوم، مس، کبالت، منگنز و ید (مولتی تریس) بر عملکرد و فراسنجه­های خونی، از 14 راس بره نر مهربان با میانگین وزن 2±29 کیلوگرم و میانگین سنی 5/5 ماه در قالب طرح کاملاً تصادفی با دو تیمار و هفت تکرار به­مدت 56 روز استفاده شد. بره­ها در گروه شاهد فقط جیره پایه را دریافت کردند، اما بره­های اختصاص یافته به تیمار بلوس علاوه بر جیره پایه، بلوس آهسته‏رهش نیز دریافت نمودند. میزان خوراک مصرفی دام­ها به­صورت روزانه اندازه­گیری شد. همچنین، وزن­کشی بره­ها به­صورت هفتگی انجام شد. خون­گیری از دام­ها در ابتدا و انتهای آزمایش قبل از خوراک وعده صبح با اعمال گرسنگی و تشنگی 12 ساعته به­عمل آمد. غلظت آنزیم­های آلکالین فسفاتاز، آلانین آمینوترانسفراز و آسپارتات آمینوترانسفراز، غلظت عناصر معدنی (روی، مس، آهن، کلسیم و فسفر)، و غلظت پروتئین کل، آلبومین، گلوبولین و نیتروژن اوره‏ای خون اندازه‏گیری شد. نتایج نشان داد میزان مصرف خوراک، وزن بدن و میانگین افزایش وزن روزانه به­طور معنی­داری تحت تأثیر جیره قرار نگرفت. بین تیمارها از نظر غلظت آنزیم­های کبدی، پروتئین کل و گلوبولین، تفاوت معنی­ داری مشاهده نشد، ولی غلظت آلبومین سرم خون در دام­های دریافت‏کننده بلوس به­طور معنی­داری افزایش یافت (73/4 در برابر 38/4 گرم بر دسی­لیتر) (05/0>P). غلظت روی پلاسما نیز در گروه دریافت‏کننده بلوس به­طور معنی‏داری بالاتر از گروه شاهد بود (37/1 در برابر 24/1 میلی­گرم بر لیتر)(05/0>P). در مجموع، اگرچه تفاوت در عملکرد معنی­دار نبود، اما افزایش وزن روزانه دام­های دریافت­کننده بلوس حدود شش درصد بالاتر از گروه شاهد بود که می­تواند به بهبود بهره­وری کمک نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of slow-release bolus containing zinc, selenium, copper, cobalt, manganese, and iodine on the growth performance and blood parameters of Mehraban male lambs

نویسندگان [English]

  • M. Farhadi
  • H. Aliarabi
  • D. Alipour
  • R. Sedighi-Vesagh
Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Introduction: Trace minerals are essential for supporting the growth and health of animals. Trace element deficiencies are common in many countries and affect animal health, productivity, and welfare. Trace element imbalance conditions may be manifested as a result of a single or multiple element deficiency. The trace elements of selenium, copper, zinc, manganese, iodine, and cobalt are involved in the immune function of domestic farm animals and will therefore potentially have roles in the etiology of infectious diseases of animals. In addition, many structural proteins, enzymes, and cellular proteins rely on the presence of these minerals to function properly. Among them, the activation of enzymes, strengthening the immune system, and improving performance can be mentioned. Zinc is essential for the metabolism of carbohydrates, proteins, and nucleic acids. Selenium is part of the glutathione peroxidase enzyme, which plays an important role in protecting the cell membrane and oxidative processes. In addition, selenium plays an important role in the protection of the thyroid gland as well as the metabolism of thyroid hormones, and selenium deficiency causes the destruction of mitochondrial and cell membranes. Copper is essential for growth and the prevention of pathological and clinical problems in animals. Copper deficiency can cause anemia, bone disorders, connective tissue disorders, insufficient growth of lambs, and abortion. Manganese is an essential element in bone growth, reproduction, and the functioning of the nervous and immune system. Cobalt is another essential element that is underutilized in ruminants. Cobalt is part of vitamin B12 and plays a role in protein and energy metabolism. The most important task of iodine in the body is the synthesis of thyroid hormones. Using supplemental feed as a trace element carrier incurs the costs of both feed and labour if additional feed is not required. Free access minerals, mineral licks, and blocks are subject to variable intakes, with animals consuming between nothing and many times the required intake. Daily supplementation has a short-term effect and is impractical for systems such as grazing, where manual feeding is not possible. Methods such as injection, which provide specific doses at regular intervals, are suitable for elements with storage capability in the body, but injection is also an expensive and time-consuming practice. Oral dosing with trace element drenches is another possible alternative. Although this ensures that each animal receives a dose, it may need regular handling, storage mechanisms for the element, and/or a high animal tolerance to the levels of element given for long-term dosing. The use of slow-release boluses can provide a certain amount of minerals to the animal over time. It has been reported that the use of slow-release bolus containing copper, cobalt, and selenium has improved the performance of sheep compared to the control group. This experiment aimed to determine the effect of a slow-release bolus containing zinc, selenium, copper, cobalt, manganese, and iodine (multitace) on the performance and blood parameters of Mehraban male lambs.
Materials and methods: 14 Mehraban male lambs aged 5.5 months with an average weight of 29±2 kg were used in a completely randomized design in two treatments and seven replicates. The control group received a basal diet, and the bolus treatment group received a basal diet + slow-release bolus. The slow-release bolus used in this study contained 150000 ppm Zn, 2282.5 ppm Se, 21600 ppm Cu, 2574 ppm Co, 20250 ppm Mn, and 2125 ppm I and released 150 to 200 mg daily on average. Bolus was administered on day 0 before feeding via a bolus gun. The experiment lasted for 56 days. To obtain the amount of feed consumed (based on dry matter), daily feed consumption and its residue were measured. Lambs were weighed on the first day of the experiment and on days 14, 28, 42, and 56 of the experiment to determine weight changes and performance of lambs. Blood samples were taken on the first and last days of the experiment before the morning meal. Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), mineral elements concentration (zinc, copper, iron, calcium, and phosphorus), total protein, albumin, globulin, and blood urea nitrogen concentrations were measured. Data were analyzed in a completely randomized design using the GLM procedure of SAS 9.1 software.
Results and discussion: Although the final weight and feed conversion ratio in the lambs receiving bolus showed a numerically higher value than the control, statistically, no significant difference was observed in the measured parameters. Blood parameters, including liver enzyme activities, concentrations of total protein and globulin, showed no significant difference between the treatments, but the blood serum albumin was significantly higher in lambs that received a bolus than in control lambs (P<0.05). Plasma zinc concentration also increased significantly in the group receiving bolus compared to the control group (P<0.05). Different results have been reported in different studies using slow-release mineral boluses. The differences in results between studies probably depend on the amount of minerals in the basal diet, the age and species of the animals, and the geographical conditions. It seems that in the present study, the amount of minerals in the basal diet was close to the level required by growing lambs, and the slow-release bolus did not have much effect on the performance of the lambs. In the present study, the significant difference in albumin levels between the treatment and control groups may be due to the positive effect of the bolus, especially the zinc element contained in it, on protein synthesis.
Conclusions: In general, the use of slow-release bolus containing zinc, selenium, copper, cobalt, manganese, and iodine affected the concentration of albumin and zinc element, and a significant difference was observed in the group receiving the bolus and the control group. But it had no significant effect on the performance of lambs, liver enzyme activities, and the concentration of other mineral elements and blood protein parameters. According to the results, although the difference in performance was not significant, the daily weight gains of lambs receiving the bolus were about six percent higher than the control group, and this could improve efficiency.

کلیدواژه‌ها [English]

  • Fattening lamb
  • Slow-release bolus
  • Performance
  • Blood parameters
  • Trace elements
Aliarabi, H., Bayervand, M., Bahari, A.A., Zamani, P., Fadayifar, A., & Alimohamady, R. (2017). Effect of feeding slow-release bolus of zinc, selenium and cobalt on growth performance and some blood metabolites of markhoz male goats. Iranian Journal of Animal Science, 47(4), 507-517. doi: 10.22059/ijas.2017.137518.653386 [In Persian]
Aliarabi H., & Fadayifar A. (2015). Effect of slow-release bolus of zinc, selenium and cobalt on some blood metabolites and performance of male and female Mehraban lambs. Iranian Journal of Animal Science Research, 7(1), 23-33. doi: 10.22067/ijasr.v7i1.35315 [In Persian]
Alimohamady, R. (2012). Effect of different levels of sources of selenium on performance and some rumen and plasma metabolites of Mehraban male lambs. MSc Thesis. Faculty of Agriculture, ‏Bu-Ali Sina University, Iran. [In Persian]
Awadeh, F., Kincaid, R., & Johnson, K. (1998). Effect of level and source of dietary selenium on concentrations of thyroid hormones and immunoglobulins in beef cows and calves. Journal of Animal Science, 76, 1204-1215. doi: 10.2527/1998.7641204x
Azizzadeh, M., Mohri, H., & Seifi, A. (2005). Effect of oral zinc supplementation on hematology, serum biochemistry, performance, and health in neonatal dairy calves. Comparative Clinical Pathology, 14(2), 67-71. doi: 10.1007/s00580-005-0559
Cheraghi-mashoof, L. (2014). Effect of zinc and copper supplements on some blood parameters and performance of pregnant ewes and their lambs. MSc Thesis. Faculty of Agriculture, ‏Bu-Ali Sina University, Iran. [In Persian]
Chung, J., Kim, J. K. Y., & Jang, I. (2007). Effects of dietary supplemented inorganic and organic selenium on antioxidant defense systems in the intestine, serum, liver and muscle of Korean native goats. Asian-Australasian Journal of Animal Science, 20, 52-59. doi: 10.5713/ajas.2007.52
Daghash, H.A., & Mousa, S.M. (1999). Zinc sulfate supplementation to ruminant rations and its effects on digestibility in lamb; growth, rectal temperature and some blood constituents in buffalo calves under heat stress. Assiut Veterinary Medical Journal, 40, 128-146. doi: 10.21608/avmj.1999.182331
Dalvand, M., Azarfar, A., Fadayifar, A., & Tehrani, A. (2022). The effect of slow-release selenium and cobalt bolus on milk production and composition, reproductive performance and some blood parameters of Lori bakhtiari's ewes. Journal of Ruminant Research, 10(4), 71-88. doi: 10.22069/ejrr.2022.20424.1857 [In Persian]
Fadayifar, A., & Aliarabi, H. (2013). Slow-release bolus (trace mineral) for ruminants. Iranian patent no: 79633. [In Persian]
Garg, A. K., Mudgal, V., & Dass, R.S. (2008). Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology, 144, 82-96. doi: 10.1016/j.anifeedsci.2007.10.003
Hosnedlova, B., Travnicek, J., & Soch, M. (2007). Current view of the significant of zinc for ruminant: a review.  Agricultura Tropica et Subtropica, 40(2), 57-64.
Hurley, L. S. (1981). Teratogenic effects of manganese, zinc and copper in nutrition. Physiological Reviews, 61, 249-295. doi: 10.1152/physrev.1981.61.2.249
Jia, W., Xiaoping, Z. H., Wei, Z. H., Jianbo, C. H., Cuihua, G., & Zhihai. J. (2009). Effects of source of supplemental zinc on performance, nutrient digestibility and plasma mineral profile in cashmere goats. Asian-Australian Journal of Animal Science, 22, 1648-1653. doi: 10.5713/ajas.2009.80649
Kadim, I. T., Johnson, E. H., Mahgoub, O., Srikandakumar, A., Al-Ajmi, D., Ritchie, A., Annamalai, K., & Al-Halhali, A. S. (2003). Effect of low levels of dietary cobalt on apparent nutrient digestibility in Omani goats. Animal Feed Science and Technology, 109, 209-216. doi: 10.1016/S0377-8401(03)00174-3
Kendall, N. R., Mackenzie, A. M., & Telfer, S. B. (2012). The trace element and humoral immune response of lambs administered a zinc, cobalt and selenium soluble glass bolus. Livestock Science, 148, 81-86. doi: 10.1016/j.livsci.2012.05.013
Kendall, N. R., & Telfer, S. B. (2000). Induction of zinc deficiency in sheep and its correction with a bolus of soluble glass containing zinc. Veterinary Research, 146, 634-637. doi: 10.1136/vr.146.22.634
Khorrami, Z., Aliarabi, H., Farahavar, A., & Fadayifar, A. (2021). The Effect of slow-release bolus of zinc and selenium or daily feeding of salts of these elements on the performance of pregnant ewes and their lambs. Research on Animal Production, 12(31), 77-89. doi: 10.52547/rap.12.31.77 [In Persian]
Khorrami, Z., Aliarabi, H., Farahavar, A., & Fadayifar, A. (2024). Effect of pre and postpartum maternal supplementation of zinc and selenium via slow-release glass bolus or the element salts on feed intake and some blood parameters in ewes and their lambs. Animal Feed Science and Technology, 311, 1-14. doi: 10.1016/j.anifeedsci.2024.115949
Kubkomawa, I. H., Tizhe, M., Emenalom, O., & Okoli, I. (2015). Handling, reference value and usefulness of blood biochemical of indigenous pastoral cattle in tropical Africa: a review. Dynamic Journal of Animal Science and Technology, 1(2), 18-27.
Kumar, N., Garg, A. K., Mudgal, V., Dass, R. S., Chaturvedi, V. K., & Varshney, V. P. (2008). Effect of different levels of selenium supplementation on growth rate, nutrient utilization, blood metabolic profile, and immune response in lambs. Biological Trace Element Research, 126(1), 44-56.‏‏ doi: 10.1007/s12011-008-8214-8
Miller, W. J. (1970). Zinc nutrition of cattle. A review. Journal of Dairy Science, 53, 1123-1135. doi: 10.3168/jds. S0022-0302(70)86355-X
Mohamed, A. H., Mohamed, M. Y., Ibrahim, K., Abd El Ghany, T. F., & Mahgoup, A. A. S. (2017). impact of nano-zinc oxide supplementation on productive performance and some biochemical parameters of ewes and offspring. Egyptian Journal of Sheep and Goat Sciences, 12(3), 1-16. doi: 10.21608/ejsgs.2017.26308
Mudgal, V., Garg, A. K., Dass, R. S., & Varshney, V. P. (2008). Effect of selenium and copper supplementation on blood metabolic profile in male buffalo (bubalus bubalis) calves. Biological Trace Element Research, 121(1), 31-38. doi: 10.1007/s12011-007-8002-x
Murray, R., Grunner, D., Mayes, P., & Rodweld, V. (1990). Chemical constituents of blood and body fluids. Harpers Biochemistry. 2nd ed. Lange Medical Book, USA. Pp. 685-690.
Nagalakshmi, D., Dhanalakshmi, K., & Himabindu, D. (2009). Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs. Veterinary Research Communications, 33, 631-644. doi: 10.1016/0891-5849(90)90076-U
National Research Council (NRC). (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelid. National Academy Press, Washington, D.C.
Piri, E. C. J. H., Viva, M., Chibunda, R. T., & Mellau, L. S. B. (2009). Effect of zinc supplementation on plasma mineral concentration in gazing goat in sub-humid climate of tanzania. Tanzania Veterinary Journal, 26(2), 92-96. doi: 10.4314/tvj. v26i2.53807
Ramadan, S. G. A., Mahboub, H. D. A., Helal, M. H. Y., & Sallam, M. A. (2018). Effect of vitamin e and selenium on performance and productivity of goats. International Journal of Chemical and Biomedical Science, 4(2), 16-22. doi: 10.2340/00015555-0754
SAS. (2003). Statistical Analysis System, User’s Guide: Statistics. Version 9.1. SAS Institute, Cary, NC, USA.
Slavik, P., Illek, J., Brix, M., Hlavicova, J., Rajmon, R., & Jilek, F. (2008). Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrum, milk and blood of beef cows. Acta Veterinaria Scandinavica, 50(43), 1-6. doi: 10.1186/1751-0147-50-43
Sobhanirad, S., Mashhadi, M., & Kashani, R. (2014). Effects of source and level of zinc on haematological and biochemical parameters in baluchi lambs. Research Opinions in Animal and Veterinary Sciences, 4(7), 389-393.
Spears, J. W., Schlegel, P., Seal, M. C., & Lloyd, K. E. (2004). Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science90(2), 211-217. doi: 10.1016/j.livprodsci.2004.05.001
Stepanova, I. A., Nazarova, A. A., & Arisov, M. V. (2020). Peculiarities of mineral metabolism of holstein heifers’ diet supplemented with copper Nano powders. World's Veterinary Journal, 10(4), 492-498. doi: 10.54203/scil.2020.wvj59
Suttle, N. F. (2010). Mineral Nutrition of Livestock, 4th ed. CAB International, Oxford, UK.
Thompson, K. G., Audige, L., Arthur, D. G., Juhan, A. F., Orr, M. B., Mcsporran, K. D., & Wilson, P. R. (1994). Osteochondrosis associated with copper deficiency in young farmed red deer and wapiti/red hybrids. New Zealand Veterinary Journal, 42, 137-143.‏ doi: 10.1080/00480169.1994.35804
Underwood, E. J., & Suttle, N. F. (1999). The mineral nutrition of livestock. CAB international, Wallingford, UK.‏‏
Vilela, F. G., Zanetti, M. A., Netto, A. S., Júnior, J. E. F., Rennó, F. P., Venturelli, B. C., & Canaes, T. S. (2012). Supplementation of diets for santa ines sheep with organic and inorganic zinc sources. Revista Brasileira de Zootechnie, 41(9), 2134-2138. doi: 10.1590/S1516-35982012000900023
Zaboli, K. H. H., Aliarabi, H., Tabatabai, M. M., Bahari, A. A., & Zarei, Z. (2013). Effect of zinc oxide nano particle and zinc oxide on performance and some blood parameters in male markhoz goat kids. Animal Production Research, 2(2), 29-41. [In Persian]
Zimmermann, M. B., Benoist, B., Corigliano, S., Jooste, P. L., Molinari, L., Moosa, K., & Torresani, T. (2006). Assessment of iodine status using dried blood spot thyroglobulin: development of reference material and establishment of an international reference range in iodine-sufficient children. The Journal of Clinical Endocrinology and Metabolism, 91(12), 4881-4887. doi: 10.1210/jc.2006-1370